计算 GCD 的 Java 程序
原文:https://www.geeksforgeeks.org/java-program-to-compute-gcd/
两个给定数 A 和 B 的 GCD (最大公约数)是能完全除 A 和 B 的最高数,即每种情况下余数均为 0。GCD 也被称为 HCF(最高公因数)。有各种方法可以找到两个给定数字的 GCD。
接近:
给定的两个数字 A 和 B 的 GCD 可以用不同的方法计算。
- Universal method
- Euclidean algorithm (by repeated subtraction)
- Euclidean algorithm (by repeating division)
示例:
Input: 20, 30
Output: GCD(20, 30) =10
Explanation: 10 is the highest integer which divides both 20 and 30 leaving 0 remainder
Input: 36, 37
Output: GCD(36, 37) = 1
Explanation: 36 and 37 don't have any factors in common except 1\. So, 1 is the gcd of 36 and 37
注:如果 A、B 是同素,则 gcd(A、B) = 1。
一般方法:
在计算 GCD 的一般方法中,我们实际上实现了 GCD 的定义。
- First, find out all the factors of A and B respectively.
- Then list the common factors of A and B.
- The highest of these common factors is GCD of A and B.
例:
A = 20, B = 30
Factors of A : (1, 2, 4, 5, 10, 20)
Factors of B : (1, 2, 3, 5, 6, 10, 15, 30)
Common factors of A and B : (1, 2, 5, 10)
Highest of the Common factors (GCD) = 10
很明显,20 和 30 的 GCD 不能大于 20。所以我们必须检查 1 到 20 之间的数字。此外,我们需要最大的约数。因此,从后向迭代以减少计算时间。
爪哇
// Java program to compute GCD of
// two numbers using general
// approach
import java.io.*;
class GFG {
// gcd() method, returns the GCD of a and b
static int gcd(int a, int b)
{
// stores minimum(a, b)
int i;
if (a < b)
i = a;
else
i = b;
// take a loop iterating through smaller number to 1
for (i = i; i > 1; i--) {
// check if the current value of i divides both
// numbers with remainder 0 if yes, then i is
// the GCD of a and b
if (a % i == 0 && b % i == 0)
return i;
}
// if there are no common factors for a and b other
// than 1, then GCD of a and b is 1
return 1;
}
// Driver method
public static void main(String[] args)
{
int a = 30, b = 20;
// calling gcd() method over
// the integers 30 and 20
System.out.println("GCD = " + gcd(b, a));
}
}
输出
GCD = 10
欧几里德算法(重复减法):
这种方法的原理是,即使我们用 A 和 B 之间的差替换较大的数字,两个数字 A 和 B 的 GCD 也将相同。在这种方法中,只要差大于 0,我们就通过用差(A,B)替换 B and B 来重复对 A 和 B 执行 GCD 操作。
示例
A = 30, B = 20
gcd(30, 20) -> gcd(A, B)
gcd(20, 30 - 20) = gcd(20,10) -> gcd(B,B-A)
gcd(30 - 20, 20 - (30 - 20)) = gcd(10, 10) -> gcd(B - A, B - (B - A))
gcd(10, 10 - 10) = gcd(10, 0)
here, the difference is 0
So stop the procedure. And 10 is the GCD of 30 and 20
Java
// Java program to compute GCD
// of two numbers using Euclid's
// repeated subtraction approach
import java.io.*;
class GFG {
// gcd method returns the GCD of a and b
static int gcd(int a, int b)
{
// if b=0, a is the GCD
if (b == 0)
return a;
// call the gcd() method recursively by
// replacing a with b and b with
// difference(a,b) as long as b != 0
else
return gcd(b, Math.abs(a - b));
}
// Driver method
public static void main(String[] args)
{
int a = 30, b = 20;
// calling gcd() over
// integers 30 and 20
System.out.println("GCD = " + gcd(a, b));
}
}
输出
GCD = 10
欧几里德算法(重复除法):
这种方法类似于重复减法。但是,在这种方法中,我们用 A 和 B 的模量代替 B,而不是差值。
示例:
A = 30, B = 20
gcd(30, 20) -> gcd(A, B)
gcd(20, 30 % 20) = gcd(20, 10) -> gcd(B, A % B)
gcd(10, 20 % 10) = gcd(10, 10) -> gcd(A % B, B % (A % B))
gcd(10, 10 % 10) = gcd(10, 0)
here, the modulus became 0
So, stop the procedure. And 10 is the GCD of 30 and 20
Java
// Java program to compute GCD
// of two numbers using Euclid's
// repeated division approach
import java.io.*;
import java.util.*;
class GFG {
// gcd method returns the GCD of a and b
static int gcd(int a, int b)
{
// if b=0, a is the GCD
if (b == 0)
return a;
// call the gcd() method recursively by
// replacing a with b and b with
// modulus(a,b) as long as b != 0
else
return gcd(b, a % b);
}
// Driver method
public static void main(String[] args)
{
int a = 20, b = 30;
// calling gcd() over
// integers 30 and 20
System.out.println("GCD = " + gcd(a, b));
}
}
输出
GCD = 10
欧几里德的重复除法是所有方法中最常用的。
版权属于:月萌API www.moonapi.com,转载请注明出处