伪命题定理
括号定理用于图的 DFS。它指出深度优先搜索树中的后代有一个有趣的属性。如果 v 是 u 的后裔,那么 v 的发现时间要晚于 u 的发现时间。 在图 g = (V,E)的任何 DFS 遍历中,对于任意两个顶点 u 和 V,恰好存在以下情况之一:
- 区间【d【u】、f【u】】【d【v】、f【v】】完全不相交, u 和 v 都不是深度优先森林中另一个的后代。
- 区间 [d[u],f[u]] 包含在区间 [d[v],f[v]] 内,u 是深度优先树中 v 的后代。
- 区间 [d[v],f[v]] 完全包含在区间 [d[u],f[u]] 内,v 是深度优先树中 u 的后代。
边的分类: DFS 遍历可以用来对输入图 G=(V,E)的边进行分类。根据深度优先森林,可以定义四种边缘类型:
- 树边:是在图中应用 DFS 后得到的树中存在的边。
- 前向边:它是一条边(u,v),这样 v 是后代,但不是 DFS 树的一部分。
- 后沿:它是一条边(u,v),这样 v 是边 u 的祖先,但不是 DFS 树的一部分。后边缘的存在表示有向图中的循环。
- 交叉边:是连接两个节点的边,使得它们之间没有任何祖先和后代关系。
给定一个由 N 顶点和 M 边组成的图,任务是将 M 条边分为树边、前向边、后向边和交叉边。
示例:
输入: N = 5,M = 7,arr[][] = { { 1,2 },{ 1,3 },{ 3,4},{ 1,4 },{ 2,5 },{ 5,1 },{ 3,2 } } 输出: {1,2} - >树边 {1,3} - >树边 {3,4} - >树边 {1,4 } 5} - >树边 {5,1} - >倒边 {3,2} - >横边 说明: 1。 绿色边缘:树边缘 2。蓝色边缘:前边缘 3。黑边:后沿 4。红边:交叉边 以下是上述信息的给定图形:
输入: N = 5,M = 4,arr[][] = { { 1,2 },{ 1,3 },{ 3,4 },{ 1,4 } } 输出: {1,2} - >树边 {1,3} - >树边 {3,4} - >树边 {1,4} - >前进边 说明:【T11 绿色边缘:树边缘 2。蓝色边缘:前边缘 3。黑边:后沿 4。红色边缘:交叉边缘 以下是上述信息的给定图形:
进场:
- 在给定的图上使用 DFS 遍历来查找每个节点的发现时间和完成时间以及父节点。
- 通过使用括号定理,在以下条件下对给定的边进行分类:
- 树边:对于任意边 (U,V) ,如果节点 U 是节点 V 的父节点,那么 (U,V) 就是给定图的树边。
- 前向边:对于任意边 (U,V) ,如果节点 V 的发现时间和结束时间与节点 U 的发现时间和结束时间完全重叠, (U,V) 即为给定图的前向边。
- 后向边:对于任意边 (U,V) ,如果节点 U 的发现时间和结束时间与节点 V 的发现时间和结束时间完全重叠,那么 (U,V) 就是给定图的后向边。
- 交叉边:对于任意边 (U,V) ,如果节点 U 的发现时间和结束时间与节点 V 的发现时间和结束时间不重叠,那么 (U,V) 就是给定图形的交叉边。
下面是上述方法的实现:
C++
// C++ program for the above approach
#include "bits/stdc++.h"
using namespace std;
// For recording time
int tim = 0;
// For creating Graph
vector<list<int> > G;
// For calculating Discovery time
// and finishing time of nodes
vector<int> disc, fin;
// For finding Parent of node
vector<int> Par;
// For storing color of node
vector<char> Color;
// Recursive function for DFS
// to update the
void DFS_Visit(int v)
{
// Make the current nodes as visited
Color[v] = 'G';
// Increment the time
tim = tim + 1;
// Assign the Discovery node of
// node v
disc[v] = tim;
// Traverse the adjacency list of
// vertex v
for (auto& it : G[v]) {
// If the nodes is not visited,
// then mark the parent of the
// current node and call DFS_Visit
// for the current node
if (Color[it] == 'W') {
Par[it] = v;
DFS_Visit(it);
}
}
Color[v] = 'B';
tim = tim + 1;
fin[v] = tim;
}
void DFS(vector<list<int> >& G)
{
// Initialise Par, disc, fin and
// Color vector to size of graph
Par.resize(G.size());
disc.resize(G.size());
fin.resize(G.size());
Color.resize(G.size());
// Initialise the Par[], Color[],
// disc[], fin[]
for (int i = 1; i < G.size(); i++) {
Color[i] = 'W';
Par[i] = 0;
disc[i] = 0;
fin[i] = 0;
}
// For every vertex if nodes is
// not visited then call DFS_Visit
// to update the discovery and
// finishing time of the node
for (int i = 1; i < G.size(); i++) {
// If color is 'W', then
// node is not visited
if (Color[i] == 'W') {
DFS_Visit(i);
}
}
}
// Function to check whether
// time intervals of x and y overlaps
// or not
bool checkOverlap(int x, int y)
{
// Find the time intervals
int x1 = disc[x], y1 = fin[x];
int x2 = disc[y], y2 = fin[y];
// Complete overlaps
if (x2 > x1 && y1 > y2) {
return true;
}
else {
return false;
}
}
// Function to check which Edges
// (x, y) belongs
string checkEdge(int x, int y)
{
// For Tree Edge
// If x is parent of y, then it
// is Tree Edge
if (Par[y] == x) {
return "Tree Edge";
}
// For Forward Edge
else if (checkOverlap(x, y)) {
return "Forward Edge";
}
// For Backward Edge
else if (checkOverlap(y, x)) {
return "Backward Edge";
}
else {
return "Cross Edge";
}
}
// Function call to find the Tree Edge,
// Back Edge, Forward Edge, and Cross Edge
void solve(int arr[][2], int N, int M)
{
// Create graph of N size
G.resize(N + 1);
// Traverse each edges
for (int i = 0; i < M; i++) {
int x = arr[i][0];
int y = arr[i][1];
// Make Directed graph
G[x].push_back(y);
}
// DFS call to calculate discovery
// and finishing time for each node
DFS(G);
// Condition for Tree Edge, Forward
// Edges, Backward Edge and Cross Edge
for (int i = 0; i < M; i++) {
int x = arr[i][0];
int y = arr[i][1];
// Function call to check Edges
cout << "{" << x << ", " << y
<< "} -> " << checkEdge(x, y)
<< endl;
}
}
// Driver Code
int main()
{
// Number of Nodes
int N = 5;
// Number of Edges
int M = 7;
// Edges for the graph
int arr[M][2]
= { { 1, 2 }, { 1, 3 },
{ 3, 4 }, { 1, 4 },
{ 2, 5 }, { 5, 1 },
{ 3, 1 } };
// Function Call
solve(arr, N, M);
return 0;
}
Python 3
# Python3 program for the above approach
# For recording time
tim = 0
# For creating Graph
G=[]
# For calculating Discovery time
# and finishing time of nodes
disc, fin=[],[]
# For finding Parent of node
Par=[]
# For storing color of node
Color=[]
# Recursive function for DFS
# to update the
def DFS_Visit(v):
global tim
# Make the current nodes as visited
Color[v] = 'G'
# Increment the time
tim += 1
# Assign the Discovery node of
# node v
disc[v] = tim
# Traverse the adjacency list of
# vertex v
for it in G[v]:
# If the nodes is not visited,
# then mark the parent of the
# current node and call DFS_Visit
# for the current node
if (Color[it] == 'W') :
Par[it] = v
DFS_Visit(it)
Color[v] = 'B'
tim = tim + 1
fin[v] = tim
def DFS(G):
global Par,disc,fin,Color
# Initialise Par, disc, fin and
# Color vector to size of graph
Par=[-1]*len(G)
disc=[-1]*len(G)
fin=[-1]*len(G)
Color=['']*len(G)
# Initialise the Par[], Color[],
# disc[], fin[]
for i in range(1,len(G)):
Color[i] = 'W'
Par[i] = 0
disc[i] = 0
fin[i] = 0
# For every vertex if nodes is
# not visited then call DFS_Visit
# to update the discovery and
# finishing time of the node
for i in range(1,len(G)):
# If color is 'W', then
# node is not visited
if (Color[i] == 'W') :
DFS_Visit(i)
# Function to check whether
# time intervals of x and y overlaps
# or not
def checkOverlap(x, y):
# Find the time intervals
x1 = disc[x]; y1 = fin[x]
x2 = disc[y]; y2 = fin[y]
# Complete overlaps
if (x2 > x1 and y1 > y2) :
return True
else :
return False
# Function to check which Edges
# (x, y) belongs
def checkEdge(x, y):
# For Tree Edge
# If x is parent of y, then it
# is Tree Edge
if (Par[y] == x) :
return "Tree Edge"
# For Forward Edge
elif (checkOverlap(x, y)) :
return "Forward Edge"
# For Backward Edge
elif (checkOverlap(y, x)) :
return "Backward Edge"
else :
return "Cross Edge"
# Function call to find the Tree Edge,
# Back Edge, Forward Edge, and Cross Edge
def solve(arr, N, M):
global G
# Create graph of N size
G=[[] for _ in range(N + 1)]
# Traverse each edges
for i in range(M):
x = arr[i][0]
y = arr[i][1]
# Make Directed graph
G[x].append(y)
# DFS call to calculate discovery
# and finishing time for each node
DFS(G)
# Condition for Tree Edge, Forward
# Edges, Backward Edge and Cross Edge
for i in range(M):
x = arr[i][0]
y = arr[i][1]
# Function call to check Edges
print("({0},{1})->".format(x,y),checkEdge(x, y))
# Driver Code
if __name__ == '__main__':
# Number of Nodes
N = 5
# Number of Edges
M = 7
# Edges for the graph
arr= [[1, 2] , [1, 3 ],
[3, 4] , [1, 4 ],
[2, 5] , [5, 1 ],
[3, 1]]
# Function Call
solve(arr, N, M)
Output:
{1, 2} -> Tree Edge
{1, 3} -> Tree Edge
{3, 4} -> Tree Edge
{1, 4} -> Forward Edge
{2, 5} -> Tree Edge
{5, 1} -> Backward Edge
{3, 1} -> Backward Edge
时间复杂度: O(N),其中 N 为图中节点总数。
辅助空间: O(N)
版权属于:月萌API www.moonapi.com,转载请注明出处