多边形裁剪|萨瑟兰-霍奇曼算法
原文:https://www . geesforgeks . org/多边形-裁剪-萨瑟兰-霍奇曼-算法-请-更改-bmp-images-jpeg-png/
给出了凸多边形和凸裁剪区域。任务是使用萨瑟兰-霍奇曼算法裁剪多边形边缘。输入是以顺时针顺序的多边形顶点的形式。
示例:
Input : Polygon : (100,150), (200,250), (300,200)
Clipping Area : (150,150), (150,200), (200,200),
(200,150) i.e. a Square
Output : (150, 162) (150, 200) (200, 200) (200, 174)
![sutherland-hodgman-example-11](img/aa703b6f53a007d6298e9f745120a3ff.png)
Example 2
Input : Polygon : (100,150), (200,250), (300,200)
Clipping Area : (100,300), (300,300), (200,100)
Output : (242, 185) (166, 166) (150, 200) (200, 250) (260, 220)
![sutherland-hodgman-example-22](img/4ef765f50389ab15fcacc49296e46b7b.png)
算法概述:
Consider each edge e of clipping Area and do following:
a) Clip given polygon against e.
如何靠着裁剪区域的边缘进行裁剪? (裁剪区域的)边被无限延伸以创建一个边界,所有的顶点都使用这个边界进行裁剪。生成的新顶点列表以顺时针方式传递到裁剪多边形的下一条边,直到所有边都被使用。
对于给定多边形的任何给定边与当前裁剪边 e,有四种可能的情况。
- 两个顶点都在里面:只有第二个顶点被添加到输出列表中
- 第一个顶点在外面,而第二个顶点在里面:边与剪辑边界的交点和第二个顶点都被添加到输出列表中
- 第一个顶点在内部,而第二个顶点在外部:只有边缘与剪辑边界的交点被添加到输出列表中
- 两个顶点都在外面:没有顶点被添加到输出列表
在实现算法之前,有两个子问题需要讨论
决定一个点是在裁剪多边形的内部还是外部 如果裁剪多边形的顶点是以顺时针顺序给出的,那么位于裁剪边的右侧的所有点都在该多边形的内部。这可以使用: 来计算
寻找边与裁剪边界的交点 如果每条线(1,2 & 3,4)的两个点是已知的,那么它们的交点可以用公式计算:-
// C++ program for implementing Sutherland–Hodgman
// algorithm for polygon clipping
#include<iostream>
using namespace std;
const int MAX_POINTS = 20;
// Returns x-value of point of intersection of two
// lines
int x_intersect(int x1, int y1, int x2, int y2,
int x3, int y3, int x4, int y4)
{
int num = (x1*y2 - y1*x2) * (x3-x4) -
(x1-x2) * (x3*y4 - y3*x4);
int den = (x1-x2) * (y3-y4) - (y1-y2) * (x3-x4);
return num/den;
}
// Returns y-value of point of intersection of
// two lines
int y_intersect(int x1, int y1, int x2, int y2,
int x3, int y3, int x4, int y4)
{
int num = (x1*y2 - y1*x2) * (y3-y4) -
(y1-y2) * (x3*y4 - y3*x4);
int den = (x1-x2) * (y3-y4) - (y1-y2) * (x3-x4);
return num/den;
}
// This functions clips all the edges w.r.t one clip
// edge of clipping area
void clip(int poly_points[][2], int &poly_size,
int x1, int y1, int x2, int y2)
{
int new_points[MAX_POINTS][2], new_poly_size = 0;
// (ix,iy),(kx,ky) are the co-ordinate values of
// the points
for (int i = 0; i < poly_size; i++)
{
// i and k form a line in polygon
int k = (i+1) % poly_size;
int ix = poly_points[i][0], iy = poly_points[i][1];
int kx = poly_points[k][0], ky = poly_points[k][1];
// Calculating position of first point
// w.r.t. clipper line
int i_pos = (x2-x1) * (iy-y1) - (y2-y1) * (ix-x1);
// Calculating position of second point
// w.r.t. clipper line
int k_pos = (x2-x1) * (ky-y1) - (y2-y1) * (kx-x1);
// Case 1 : When both points are inside
if (i_pos < 0 && k_pos < 0)
{
//Only second point is added
new_points[new_poly_size][0] = kx;
new_points[new_poly_size][1] = ky;
new_poly_size++;
}
// Case 2: When only first point is outside
else if (i_pos >= 0 && k_pos < 0)
{
// Point of intersection with edge
// and the second point is added
new_points[new_poly_size][0] = x_intersect(x1,
y1, x2, y2, ix, iy, kx, ky);
new_points[new_poly_size][1] = y_intersect(x1,
y1, x2, y2, ix, iy, kx, ky);
new_poly_size++;
new_points[new_poly_size][0] = kx;
new_points[new_poly_size][1] = ky;
new_poly_size++;
}
// Case 3: When only second point is outside
else if (i_pos < 0 && k_pos >= 0)
{
//Only point of intersection with edge is added
new_points[new_poly_size][0] = x_intersect(x1,
y1, x2, y2, ix, iy, kx, ky);
new_points[new_poly_size][1] = y_intersect(x1,
y1, x2, y2, ix, iy, kx, ky);
new_poly_size++;
}
// Case 4: When both points are outside
else
{
//No points are added
}
}
// Copying new points into original array
// and changing the no. of vertices
poly_size = new_poly_size;
for (int i = 0; i < poly_size; i++)
{
poly_points[i][0] = new_points[i][0];
poly_points[i][1] = new_points[i][1];
}
}
// Implements Sutherland–Hodgman algorithm
void suthHodgClip(int poly_points[][2], int poly_size,
int clipper_points[][2], int clipper_size)
{
//i and k are two consecutive indexes
for (int i=0; i<clipper_size; i++)
{
int k = (i+1) % clipper_size;
// We pass the current array of vertices, it's size
// and the end points of the selected clipper line
clip(poly_points, poly_size, clipper_points[i][0],
clipper_points[i][1], clipper_points[k][0],
clipper_points[k][1]);
}
// Printing vertices of clipped polygon
for (int i=0; i < poly_size; i++)
cout << '(' << poly_points[i][0] <<
", " << poly_points[i][1] << ") ";
}
//Driver code
int main()
{
// Defining polygon vertices in clockwise order
int poly_size = 3;
int poly_points[20][2] = {{100,150}, {200,250},
{300,200}};
// Defining clipper polygon vertices in clockwise order
// 1st Example with square clipper
int clipper_size = 4;
int clipper_points[][2] = {{150,150}, {150,200},
{200,200}, {200,150} };
// 2nd Example with triangle clipper
/*int clipper_size = 3;
int clipper_points[][2] = {{100,300}, {300,300},
{200,100}};*/
//Calling the clipping function
suthHodgClip(poly_points, poly_size, clipper_points,
clipper_size);
return 0;
}
输出:
(150, 162) (150, 200) (200, 200) (200, 174)
相关文章: 线裁剪|集 1(科恩-萨瑟兰算法) 计算机图形学中的点裁剪算法
本文由纳巴尼特罗伊供稿。如果你喜欢 GeeksforGeeks 并想投稿,你也可以使用write.geeksforgeeks.org写一篇文章或者把你的文章邮寄到 review-team@geeksforgeeks.org。看到你的文章出现在极客博客主页上,帮助其他极客。
如果你发现任何不正确的地方,或者你想分享更多关于上面讨论的话题的信息,请写评论。
版权属于:月萌API www.moonapi.com,转载请注明出处