检测图形中的负周期| (贝尔曼·福特)
原文: https://www.geeksforgeeks.org/detect-negative-cycle-graph-bellman-ford/
我们得到一个有向图。 我们需要计算图是否具有负周期。 负周期是指周期总和为负的周期。
在图表的各种应用中都可以找到负权重。 例如,如果您沿着路径行进,则无需为路径付费,而可以得到一些好处。
示例:
Input : 4 4
0 1 1
1 2 -1
2 3 -1
3 0 -1
Output : Yes
The graph contains a negative cycle.
这个想法是使用 Bellman Ford 算法。
下面是算法查找,是否可以从给定来源获得负负重循环。
-
初始化从源到所有顶点的距离为无穷大,到源自身的距离为 0。创建大小为| V |的数组 dist []。 除了 dist [src](其中 src 是源顶点)之外的所有值都为无穷大。
-
此步骤计算最短距离。 跟随| V | -1 次,其中| V | 是给定图中的顶点数。
….. a)对每个边 uv 执行以下操作
………………如果 dist [v] > dist [u] +边 uv 的权重,则更新 dist [v]
………………….dist [v] = dist [u] +边 uv 的权重
- 此步骤报告在权重周期中是否存在负的权重周期 图形。 对每个边 u-v 执行以下操作
……如果 dist [v] > dist [u] +边 uv 的权重,则“图形包含负权重周期”
第 3 步的想法是,如果图形不包含负权重循环,则第 2 步可确保最短距离。 如果我们再遍历所有边一次,并且获得任意顶点的较短路径,那么权重周期将为负。
C++
// A C++ program to check if a graph contains negative
// weight cycle using Bellman-Ford algorithm. This program
// works only if all vertices are reachable from a source
// vertex 0.
#include <bits/stdc++.h>
using namespace std;
// a structure to represent a weighted edge in graph
struct Edge {
int src, dest, weight;
};
// a structure to represent a connected, directed and
// weighted graph
struct Graph {
// V-> Number of vertices, E-> Number of edges
int V, E;
// graph is represented as an array of edges.
struct Edge* edge;
};
// Creates a graph with V vertices and E edges
struct Graph* createGraph(int V, int E)
{
struct Graph* graph = new Graph;
graph->V = V;
graph->E = E;
graph->edge = new Edge[graph->E];
return graph;
}
// The main function that finds shortest distances
// from src to all other vertices using Bellman-
// Ford algorithm. The function also detects
// negative weight cycle
bool isNegCycleBellmanFord(struct Graph* graph,
int src)
{
int V = graph->V;
int E = graph->E;
int dist[V];
// Step 1: Initialize distances from src
// to all other vertices as INFINITE
for (int i = 0; i < V; i++)
dist[i] = INT_MAX;
dist[src] = 0;
// Step 2: Relax all edges |V| - 1 times.
// A simple shortest path from src to any
// other vertex can have at-most |V| - 1
// edges
for (int i = 1; i <= V - 1; i++) {
for (int j = 0; j < E; j++) {
int u = graph->edge[j].src;
int v = graph->edge[j].dest;
int weight = graph->edge[j].weight;
if (dist[u] != INT_MAX && dist[u] + weight < dist[v])
dist[v] = dist[u] + weight;
}
}
// Step 3: check for negative-weight cycles.
// The above step guarantees shortest distances
// if graph doesn't contain negative weight cycle.
// If we get a shorter path, then there
// is a cycle.
for (int i = 0; i < E; i++) {
int u = graph->edge[i].src;
int v = graph->edge[i].dest;
int weight = graph->edge[i].weight;
if (dist[u] != INT_MAX && dist[u] + weight < dist[v])
return true;
}
return false;
}
// Driver program to test above functions
int main()
{
/* Let us create the graph given in above example */
int V = 5; // Number of vertices in graph
int E = 8; // Number of edges in graph
struct Graph* graph = createGraph(V, E);
// add edge 0-1 (or A-B in above figure)
graph->edge[0].src = 0;
graph->edge[0].dest = 1;
graph->edge[0].weight = -1;
// add edge 0-2 (or A-C in above figure)
graph->edge[1].src = 0;
graph->edge[1].dest = 2;
graph->edge[1].weight = 4;
// add edge 1-2 (or B-C in above figure)
graph->edge[2].src = 1;
graph->edge[2].dest = 2;
graph->edge[2].weight = 3;
// add edge 1-3 (or B-D in above figure)
graph->edge[3].src = 1;
graph->edge[3].dest = 3;
graph->edge[3].weight = 2;
// add edge 1-4 (or A-E in above figure)
graph->edge[4].src = 1;
graph->edge[4].dest = 4;
graph->edge[4].weight = 2;
// add edge 3-2 (or D-C in above figure)
graph->edge[5].src = 3;
graph->edge[5].dest = 2;
graph->edge[5].weight = 5;
// add edge 3-1 (or D-B in above figure)
graph->edge[6].src = 3;
graph->edge[6].dest = 1;
graph->edge[6].weight = 1;
// add edge 4-3 (or E-D in above figure)
graph->edge[7].src = 4;
graph->edge[7].dest = 3;
graph->edge[7].weight = -3;
if (isNegCycleBellmanFord(graph, 0))
cout << "Yes";
else
cout << "No";
return 0;
}
Java
// Java program to check if a graph contains negative
// weight cycle using Bellman-Ford algorithm. This program
// works only if all vertices are reachable from a source
// vertex 0\.
import java.util.*;
class GFG {
// a structure to represent a weighted edge in graph
static class Edge {
int src, dest, weight;
}
// a structure to represent a connected, directed and
// weighted graph
static class Graph {
// V-> Number of vertices, E-> Number of edges
int V, E;
// graph is represented as an array of edges.
Edge edge[];
}
// Creates a graph with V vertices and E edges
static Graph createGraph(int V, int E) {
Graph graph = new Graph();
graph.V = V;
graph.E = E;
graph.edge = new Edge[graph.E];
for (int i = 0; i < graph.E; i++) {
graph.edge[i] = new Edge();
}
return graph;
}
// The main function that finds shortest distances
// from src to all other vertices using Bellman-
// Ford algorithm. The function also detects
// negative weight cycle
static boolean isNegCycleBellmanFord(Graph graph, int src) {
int V = graph.V;
int E = graph.E;
int[] dist = new int[V];
// Step 1: Initialize distances from src
// to all other vertices as INFINITE
for (int i = 0; i < V; i++)
dist[i] = Integer.MAX_VALUE;
dist[src] = 0;
// Step 2: Relax all edges |V| - 1 times.
// A simple shortest path from src to any
// other vertex can have at-most |V| - 1
// edges
for (int i = 1; i <= V - 1; i++) {
for (int j = 0; j < E; j++) {
int u = graph.edge[j].src;
int v = graph.edge[j].dest;
int weight = graph.edge[j].weight;
if (dist[u] != Integer.MAX_VALUE && dist[u] + weight < dist[v])
dist[v] = dist[u] + weight;
}
}
// Step 3: check for negative-weight cycles.
// The above step guarantees shortest distances
// if graph doesn't contain negative weight cycle.
// If we get a shorter path, then there
// is a cycle.
for (int i = 0; i < E; i++) {
int u = graph.edge[i].src;
int v = graph.edge[i].dest;
int weight = graph.edge[i].weight;
if (dist[u] != Integer.MAX_VALUE && dist[u] + weight < dist[v])
return true;
}
return false;
}
// Driver Code
public static void main(String[] args) {
int V = 5, E = 8;
Graph graph = createGraph(V, E);
// add edge 0-1 (or A-B in above figure)
graph.edge[0].src = 0;
graph.edge[0].dest = 1;
graph.edge[0].weight = -1;
// add edge 0-2 (or A-C in above figure)
graph.edge[1].src = 0;
graph.edge[1].dest = 2;
graph.edge[1].weight = 4;
// add edge 1-2 (or B-C in above figure)
graph.edge[2].src = 1;
graph.edge[2].dest = 2;
graph.edge[2].weight = 3;
// add edge 1-3 (or B-D in above figure)
graph.edge[3].src = 1;
graph.edge[3].dest = 3;
graph.edge[3].weight = 2;
// add edge 1-4 (or A-E in above figure)
graph.edge[4].src = 1;
graph.edge[4].dest = 4;
graph.edge[4].weight = 2;
// add edge 3-2 (or D-C in above figure)
graph.edge[5].src = 3;
graph.edge[5].dest = 2;
graph.edge[5].weight = 5;
// add edge 3-1 (or D-B in above figure)
graph.edge[6].src = 3;
graph.edge[6].dest = 1;
graph.edge[6].weight = 1;
// add edge 4-3 (or E-D in above figure)
graph.edge[7].src = 4;
graph.edge[7].dest = 3;
graph.edge[7].weight = -3;
if (isNegCycleBellmanFord(graph, 0))
System.out.println("Yes");
else
System.out.println("No");
}
}
// This code is contributed by
// sanjeev2552
输出:
No
它是如何工作的?
如 Bellman Ford 算法中所讨论的,对于给定源,它首先计算路径中最多具有一个边的最短距离。 然后,它计算出带有 2 个边的最短路径,依此类推。 在第 i 次外循环迭代之后,将计算最多 i 个边的最短路径。 可以有最大| V |。 –在任何简单路径中都有 1 条边,这就是为什么外循环运行| v |的原因 – 1 次。 如果存在负的权重循环,则再进行一次迭代将缩短路径。
如何处理断开的图形(如果无法从源到达循环)?
如果断开给定图形的连接,上述算法和程序可能无法正常工作。 当所有顶点都可以从源顶点 0 到达时,它就可以工作。
C++
// A C++ program for Bellman-Ford's single source
// shortest path algorithm.
#include <bits/stdc++.h>
using namespace std;
// a structure to represent a weighted edge in graph
struct Edge {
int src, dest, weight;
};
// a structure to represent a connected, directed and
// weighted graph
struct Graph {
// V-> Number of vertices, E-> Number of edges
int V, E;
// graph is represented as an array of edges.
struct Edge* edge;
};
// Creates a graph with V vertices and E edges
struct Graph* createGraph(int V, int E)
{
struct Graph* graph = new Graph;
graph->V = V;
graph->E = E;
graph->edge = new Edge[graph->E];
return graph;
}
// The main function that finds shortest distances
// from src to all other vertices using Bellman-
// Ford algorithm. The function also detects
// negative weight cycle
bool isNegCycleBellmanFord(struct Graph* graph,
int src, int dist[])
{
int V = graph->V;
int E = graph->E;
// Step 1: Initialize distances from src
// to all other vertices as INFINITE
for (int i = 0; i < V; i++)
dist[i] = INT_MAX;
dist[src] = 0;
// Step 2: Relax all edges |V| - 1 times.
// A simple shortest path from src to any
// other vertex can have at-most |V| - 1
// edges
for (int i = 1; i <= V - 1; i++) {
for (int j = 0; j < E; j++) {
int u = graph->edge[j].src;
int v = graph->edge[j].dest;
int weight = graph->edge[j].weight;
if (dist[u] != INT_MAX && dist[u] + weight < dist[v])
dist[v] = dist[u] + weight;
}
}
// Step 3: check for negative-weight cycles.
// The above step guarantees shortest distances
// if graph doesn't contain negative weight cycle.
// If we get a shorter path, then there
// is a cycle.
for (int i = 0; i < E; i++) {
int u = graph->edge[i].src;
int v = graph->edge[i].dest;
int weight = graph->edge[i].weight;
if (dist[u] != INT_MAX && dist[u] + weight < dist[v])
return true;
}
return false;
}
// Returns true if given graph has negative weight
// cycle.
bool isNegCycleDisconnected(struct Graph* graph)
{
int V = graph->V;
// To keep track of visited vertices to avoid
// recomputations.
bool visited[V];
memset(visited, 0, sizeof(visited));
// This array is filled by Bellman-Ford
int dist[V];
// Call Bellman-Ford for all those vertices
// that are not visited
for (int i = 0; i < V; i++) {
if (visited[i] == false) {
// If cycle found
if (isNegCycleBellmanFord(graph, i, dist))
return true;
// Mark all vertices that are visited
// in above call.
for (int i = 0; i < V; i++)
if (dist[i] != INT_MAX)
visited[i] = true;
}
}
return false;
}
// Driver program to test above functions
int main()
{
/* Let us create the graph given in above example */
int V = 5; // Number of vertices in graph
int E = 8; // Number of edges in graph
struct Graph* graph = createGraph(V, E);
// add edge 0-1 (or A-B in above figure)
graph->edge[0].src = 0;
graph->edge[0].dest = 1;
graph->edge[0].weight = -1;
// add edge 0-2 (or A-C in above figure)
graph->edge[1].src = 0;
graph->edge[1].dest = 2;
graph->edge[1].weight = 4;
// add edge 1-2 (or B-C in above figure)
graph->edge[2].src = 1;
graph->edge[2].dest = 2;
graph->edge[2].weight = 3;
// add edge 1-3 (or B-D in above figure)
graph->edge[3].src = 1;
graph->edge[3].dest = 3;
graph->edge[3].weight = 2;
// add edge 1-4 (or A-E in above figure)
graph->edge[4].src = 1;
graph->edge[4].dest = 4;
graph->edge[4].weight = 2;
// add edge 3-2 (or D-C in above figure)
graph->edge[5].src = 3;
graph->edge[5].dest = 2;
graph->edge[5].weight = 5;
// add edge 3-1 (or D-B in above figure)
graph->edge[6].src = 3;
graph->edge[6].dest = 1;
graph->edge[6].weight = 1;
// add edge 4-3 (or E-D in above figure)
graph->edge[7].src = 4;
graph->edge[7].dest = 3;
graph->edge[7].weight = -3;
if (isNegCycleDisconnected(graph))
cout << "Yes";
else
cout << "No";
return 0;
}
Java
// A Java program for Bellman-Ford's single source
// shortest path algorithm.
import java.util.*;
class GFG{
// A structure to represent a weighted
// edge in graph
static class Edge
{
int src, dest, weight;
}
// A structure to represent a connected,
// directed and weighted graph
static class Graph
{
// V-> Number of vertices,
// E-> Number of edges
int V, E;
// Graph is represented as
// an array of edges.
Edge edge[];
}
// Creates a graph with V vertices and E edges
static Graph createGraph(int V, int E)
{
Graph graph = new Graph();
graph.V = V;
graph.E = E;
graph.edge = new Edge[graph.E];
for(int i = 0; i < graph.E; i++)
{
graph.edge[i] = new Edge();
}
return graph;
}
// The main function that finds shortest distances
// from src to all other vertices using Bellman-
// Ford algorithm. The function also detects
// negative weight cycle
static boolean isNegCycleBellmanFord(Graph graph,
int src,
int dist[])
{
int V = graph.V;
int E = graph.E;
// Step 1: Initialize distances from src
// to all other vertices as INFINITE
for(int i = 0; i < V; i++)
dist[i] = Integer.MAX_VALUE;
dist[src] = 0;
// Step 2: Relax all edges |V| - 1 times.
// A simple shortest path from src to any
// other vertex can have at-most |V| - 1
// edges
for(int i = 1; i <= V - 1; i++)
{
for(int j = 0; j < E; j++)
{
int u = graph.edge[j].src;
int v = graph.edge[j].dest;
int weight = graph.edge[j].weight;
if (dist[u] != Integer.MAX_VALUE &&
dist[u] + weight < dist[v])
dist[v] = dist[u] + weight;
}
}
// Step 3: check for negative-weight cycles.
// The above step guarantees shortest distances
// if graph doesn't contain negative weight cycle.
// If we get a shorter path, then there
// is a cycle.
for(int i = 0; i < E; i++)
{
int u = graph.edge[i].src;
int v = graph.edge[i].dest;
int weight = graph.edge[i].weight;
if (dist[u] != Integer.MAX_VALUE &&
dist[u] + weight < dist[v])
return true;
}
return false;
}
// Returns true if given graph has negative weight
// cycle.
static boolean isNegCycleDisconnected(Graph graph)
{
int V = graph.V;
// To keep track of visited vertices
// to avoid recomputations.
boolean visited[] = new boolean[V];
Arrays.fill(visited, false);
// This array is filled by Bellman-Ford
int dist[] = new int[V];
// Call Bellman-Ford for all those vertices
// that are not visited
for(int i = 0; i < V; i++)
{
if (visited[i] == false)
{
// If cycle found
if (isNegCycleBellmanFord(graph, i, dist))
return true;
// Mark all vertices that are visited
// in above call.
for(int j = 0; j < V; j++)
if (dist[j] != Integer.MAX_VALUE)
visited[j] = true;
}
}
return false;
}
// Driver Code
public static void main(String[] args)
{
int V = 5, E = 8;
Graph graph = createGraph(V, E);
// Add edge 0-1 (or A-B in above figure)
graph.edge[0].src = 0;
graph.edge[0].dest = 1;
graph.edge[0].weight = -1;
// Add edge 0-2 (or A-C in above figure)
graph.edge[1].src = 0;
graph.edge[1].dest = 2;
graph.edge[1].weight = 4;
// Add edge 1-2 (or B-C in above figure)
graph.edge[2].src = 1;
graph.edge[2].dest = 2;
graph.edge[2].weight = 3;
// Add edge 1-3 (or B-D in above figure)
graph.edge[3].src = 1;
graph.edge[3].dest = 3;
graph.edge[3].weight = 2;
// Add edge 1-4 (or A-E in above figure)
graph.edge[4].src = 1;
graph.edge[4].dest = 4;
graph.edge[4].weight = 2;
// Add edge 3-2 (or D-C in above figure)
graph.edge[5].src = 3;
graph.edge[5].dest = 2;
graph.edge[5].weight = 5;
// Add edge 3-1 (or D-B in above figure)
graph.edge[6].src = 3;
graph.edge[6].dest = 1;
graph.edge[6].weight = 1;
// Add edge 4-3 (or E-D in above figure)
graph.edge[7].src = 4;
graph.edge[7].dest = 3;
graph.edge[7].weight = -3;
if (isNegCycleDisconnected(graph))
System.out.println("Yes");
else
System.out.println("No");
}
}
// This code is contributed by adityapande88
输出:
No
使用 Floyd Warshall 检测负周期
本文由 kartik 提供。 如果您喜欢 GeeksforGeeks 并希望做出贡献,则还可以使用 tribution.geeksforgeeks.org 撰写文章,或将您的文章邮寄至 tribution@geeksforgeeks.org。 查看您的文章出现在 GeeksforGeeks 主页上,并帮助其他 Geeks。
如果发现任何不正确的内容,或者想分享有关上述主题的更多信息,请发表评论。
版权属于:月萌API www.moonapi.com,转载请注明出处