使用基于 GNU 树的容器的区间树
原文:https://www . geesforgeks . org/interval-tree-use-GNU-tree-based-container/
考虑这样一种情况:我们有一组时间间隔,我们需要有效地执行以下操作:
- 添加间隔
- 删除间隔
- 给定一个间隔 x,找出 x 是否与任何现有的间隔重叠。
一个区间树可以被实现为一个扩充的二进制搜索树(最好是自平衡的),从而使我们能够以 O(logN)的时间复杂度执行所需的操作。
树的每个节点将存储以下信息:
- 一个区间 i :表示为一对【低,高】。
- 元数据右端点最大值:以该节点为根的子树中存储的所有区间的右端点最大值。存储这些元数据就是我们如何扩充树。
区间树|集合 1 中使用的区间树示例:
在区间树|集合 1 中,我们看到了如何使用简单的 BST 实现区间树(不是自平衡)。在本文中,我们将使用内置的基于 GNU 树的容器来实现一个区间树。这样做的好处是:
- 我们不必编写自己的树形数据结构。
- 我们得到默认操作,如插入和删除开箱即用。
- 我们可以使用内置的红黑树实现,这意味着我们的树将是自平衡。
我们将使用 基于 GNU 策略的实现树形数据结构。
文章g++中基于策略的数据结构介绍了 GNU 基于策略的数据结构以及所需的头文件。
我们将定义我们自己的 Node_update 策略,这样我们就可以将子树中间隔的最大值保持为我们树的节点中的元数据。
定义自定义节点策略的语法是:
C++
template <
typename Const_Node_Iterator,
typename Node_Iterator,
typename Cmp_Fn_,
typename Allocator_>
;
struct custom_node_update_policy {
typedef type_of_our_metadata
metadata_type;
void operator()(
node_iterator it,
const_node_iterator end_it)
{
// ...
}
// ...other methods that we need
}
- type _ of _ our _ metadata:int在我们的例子中,因为我们想要存储元数据“子树中区间右端点的最大值”。
- void 运算符()(node_iterator it,const_node_iterator end_it): 内部调用的方法,用于在不变性失效后恢复节点不变性,即维护正确的元数据。
- 它: node_iterator 到我们需要恢复其不变性的节点。
- end _ it:const _ node _ iterator 到后叶节点。
详见 GNU 基于树的容器。
我们还将定义一个方法重叠搜索,它搜索树中与给定间隔 i 重叠的任何间隔。
// pseudocode for overlapSearch
Interval overlapSearch(Interval i) {
// start from root
it = root_node
while (it not null) {
if (doOVerlap(i, it->interval)) {
// overlap found
return it->interval
}
if (left_child exists
AND
left_child->max_right_endpoint
>= it->left_endpoint) {
// go to left child
it = it->left_child
}
else {
// go to right child
it = it->right_child
}
}
// no overlapping interval found
return NO_INTERVAL_FOUND
}
下面是间隔树的实现:
C++
// CPP program for above approach
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
using namespace std;
using namespace __gnu_pbds;
typedef pair<int, int> Interval;
// An invalid interval, used as
// return value to denote that no
// matching interval was found
const Interval NO_INTERVAL_FOUND = { 1, 0 };
// interval update policy struct
template <class Node_CItr,
class Node_Itr,
class Cmp_Fn, class _Alloc>
struct interval_node_update_policy {
// Our metadata is maximum of
// right-endpoints of intervals in the
// sub-tree, which is of type int
typedef int metadata_type;
// An utility function to check
// if given two intervals overlap
bool doOverlap(Interval i1,
Node_CItr i2)
{
return (i1.first <= (*i2)->second
&& (*i2)->first <= i1.second);
}
// Search for any interval that
// overlaps with Interval i
Interval overlapSearch(Interval i)
{
for (Node_CItr it = node_begin();
it != node_end();) {
if (doOverlap(i, it)) {
return { (*it)->first,
(*it)->second };
}
if (it.get_l_child() != node_end()
&& it.get_l_child()
.get_metadata()
>= i.first) {
it = it.get_l_child();
}
else {
it = it.get_r_child();
}
}
return NO_INTERVAL_FOUND;
}
// To restore the node-invariance
// of the node pointed to by
// (it). We need to derive the
// metadata for node (it) from
// its left-child and right-child.
void operator()(Node_Itr it,
Node_CItr end_it)
{
int max_high = (*it)->second;
if (it.get_l_child() != end_it) {
max_high = max(
max_high,
it.get_l_child()
.get_metadata());
}
if (it.get_r_child() != end_it) {
max_high = max(
max_high,
it.get_r_child()
.get_metadata());
}
// The max of right-endpoint
// of this node and the max
// right-endpoints of children.
const_cast<int&>(
it.get_metadata())
= max_high;
}
virtual Node_CItr node_begin() const = 0;
virtual Node_CItr node_end() const = 0;
virtual ~interval_node_update_policy() {}
};
// IntervalTree data structure
// rb_tree_tag: uses red-black search tree
// interval_node_update_policy:
// our custom Node_update policy
typedef tree<Interval,
null_type,
less<Interval>,
rb_tree_tag,
interval_node_update_policy>
IntervalTree;
// Driver Code
int main()
{
IntervalTree IT;
Interval intvs[] = { { 15, 20 },
{ 10, 30 },
{ 17, 19 },
{ 5, 20 },
{ 12, 15 },
{ 30, 40 } };
for (Interval intv : intvs) {
IT.insert(intv);
}
Interval toSearch = { 25, 29 };
cout << "\nSearching for interval ["
<< toSearch.first << ", "
<< toSearch.second << "]";
Interval res = IT.overlapSearch(toSearch);
if (res == NO_INTERVAL_FOUND)
cout << "\nNo Overlapping Interval\n";
else
cout << "\nOverlaps with ["
<< res.first << ", "
<< res.second << "]\n";
Interval toErase = { 10, 30 };
IT.erase(toErase);
cout << "\nDeleting interval ["
<< toErase.first << ", "
<< toErase.second
<< "]\n";
cout << "\nSearching for interval ["
<< toSearch.first << ", "
<< toSearch.second << "]";
res = IT.overlapSearch(toSearch);
if (res == NO_INTERVAL_FOUND)
cout << "\nNo Overlapping Interval\n";
else
cout << "\nOverlaps with ["
<< res.first << ", "
<< res.second << "]\n";
return 0;
}
Output:
Searching for interval [25, 29]
Overlaps with [10, 30]
Deleting interval [10, 30]
Searching for interval [25, 29]
No Overlapping Interval
时间复杂度
所有操作的大小都是对数的,即 O(logN) ,其中 N 是存储在树中的区间数。
我们能够实现对数最坏情况的复杂性,因为内部使用了一个红黑树,这是自平衡的。
版权属于:月萌API www.moonapi.com,转载请注明出处