用于股票买卖以最大化利润的 Java 程序
一只股票每天的成本是以数组的形式给出的,找出你在那些日子里通过买卖所能获得的最大利润。例如,如果给定的数组是{100,180,260,310,40,535,695},则通过在第 0 天买入,在第 3 天卖出可以获得最大利润。再次在第 4 天买入,在第 6 天卖出。如果给定的一系列价格是按递减顺序排序的,那么就根本赚不到利润。
天真的方法:一个简单的方法是尝试在每一天盈利的时候买入股票并卖出,并不断更新到目前为止的最大利润。
下面是上述方法的实现:
Java 语言(一种计算机语言,尤用于创建网站)
// Java implementation of the approach
import java.util.*;
class GFG{
// Function to return the maximum profit
// that can be made after buying and
// selling the given stocks
static int maxProfit(int price[],
int start, int end)
{
// If the stocks can't be bought
if (end <= start)
return 0;
// Initialise the profit
int profit = 0;
// The day at which the stock
// must be bought
for (int i = start; i < end; i++)
{
// The day at which the
// stock must be sold
for (int j = i + 1; j <= end; j++)
{
// If buying the stock at ith day and
// selling it at jth day is profitable
if (price[j] > price[i])
{
// Update the current profit
int curr_profit = price[j] - price[i] +
maxProfit(price,
start, i - 1) +
maxProfit(price,
j + 1, end);
// Update the maximum profit so far
profit = Math.max(profit,
curr_profit);
}
}
}
return profit;
}
// Driver code
public static void main(String[] args)
{
int price[] = {100, 180, 260, 310,
40, 535, 695};
int n = price.length;
System.out.print(maxProfit(
price, 0, n - 1));
}
}
// This code is contributed by PrinciRaj1992
输出:
865
高效方法:如果只允许我们买卖一次,那么我们可以使用以下算法。两个元素之间的最大差异。在这里,我们可以多次买卖。 下面是这个问题的算法。
- 找到局部最小值并将其存储为起始索引。如果不存在,返回。
- 找到局部极大值。并将其存储为结束索引。如果我们到达终点,将终点设置为终点索引。
- 更新解决方案(增加买卖对的计数)
- 如果没有到达终点,重复上述步骤。
Java 语言(一种计算机语言,尤用于创建网站)
// Program to find best buying and
// selling days
import java.util.ArrayList;
// Solution structure
class Interval
{
int buy, sell;
}
class StockBuySell
{
// This function finds the buy sell
// schedule for maximum profit
void stockBuySell(int price[], int n)
{
// Prices must be given for at least
// two days
if (n == 1)
return;
int count = 0;
// Solution array
ArrayList<Interval> sol =
new ArrayList<Interval>();
// Traverse through given price array
int i = 0;
while (i < n - 1)
{
// Find Local Minima. Note that the
// limit is (n-2) as we are comparing
// present element to the next element.
while ((i < n - 1) &&
(price[i + 1] <= price[i]))
i++;
// If we reached the end, break as no
// further solution possible
if (i == n - 1)
break;
Interval e = new Interval();
e.buy = i++;
// Store the index of minima
// Find Local Maxima. Note that the
// limit is (n-1) as we are comparing
// to previous element
while ((i < n) &&
(price[i] >= price[i - 1]))
i++;
// Store the index of maxima
e.sell = i - 1;
sol.add(e);
// Increment number of buy/sell
count++;
}
// print solution
if (count == 0)
System.out.println(
"There is no day when buying the stock " +
"will make profit");
else
for (int j = 0; j < count; j++)
System.out.println(
"Buy on day: " + sol.get(j).buy +
" " + "Sell on day : " +
sol.get(j).sell);
return;
}
// Driver code
public static void main(String args[])
{
StockBuySell stock = new StockBuySell();
// stock prices on consecutive days
int price[] = {100, 180, 260,
310, 40, 535, 695};
int n = price.length;
// function call
stock.stockBuySell(price, n);
}
}
// This code is contributed by Mayank Jaiswal
输出:
Buy on day: 0 Sell on day: 3
Buy on day: 4 Sell on day: 6
时间复杂度:外环运行到我变成 n-1。内部两个循环在每次迭代中增加 I 的值。所以总的时间复杂度是 O(n)
谷峰进场:
在这种方法中,我们只需要找到下一个更大的元素,并从当前元素中减去它,这样差异就会不断增加,直到达到最小值。如果序列是递减序列,那么最大可能利润为 0。
Java 语言(一种计算机语言,尤用于创建网站)
// Java program for the above approach
import java.io.*;
class GFG
{
static int maxProfit(int prices[],
int size)
{
// maxProfit adds up the difference
// between adjacent elements if they
// are in increasing order
int maxProfit = 0;
// The loop starts from 1 as its
// comparing with the previous
for (int i = 1; i < size; i++)
if (prices[i] > prices[i - 1])
maxProfit += prices[i] - prices[i - 1];
return maxProfit;
}
// Driver code
public static void main(String[] args)
{
// stock prices on consecutive days
int price[] = {100, 180, 260,
310, 40, 535, 695};
int n = price.length;
// function call
System.out.println(maxProfit(price, n));
}
}
// This code is contributed by rajsanghavi9.
输出:
865
时间复杂度:O(n) T3】辅助 T5】空间: O(1)
本文由 Ashish Anand 编辑,GeeksforGeeks 团队审核。如果你发现任何不正确的地方,或者你想分享更多关于上面讨论的话题的信息,请写评论。
如果你发现任何不正确的地方,或者你想分享更多关于上面讨论的话题的信息,请写评论。
版权属于:月萌API www.moonapi.com,转载请注明出处