K 个中心问题|集合 1(贪婪近似算法)
原文:https://www . geesforgeks . org/k-centers-problem-set-1-greedy-approach-algorithm/
给定 n 个城市和每对城市之间的距离,选择 k 个城市放置仓库(或自动取款机或云服务器),使得一个城市到仓库(或自动取款机或云服务器)的最大距离最小。
例如,考虑以下四个城市,0、1、2 和 3,以及它们之间的距离,如何在这四个城市中放置 2 台自动取款机,使一个城市到自动取款机的最大距离最小化。
这个问题没有多项式时间的解决方案,因为这个问题是一个已知的 NP-Hard 问题。有一个多项式时间的贪婪近似算法,贪婪算法提供了一个永远不会比最优解差两倍的解。只有当城市之间的距离遵循三角不等式(两点之间的距离总是小于通过第三点的距离之和)时,贪婪解才有效。
2-近似贪婪算法: 1)任意选择第一个中心。 2)使用以下标准选择剩余的 k-1 中心。 让 c1,c2,c3,… ci 成为已经选择的中心。选择 (i+1)第一个中心,选择距离已经 选定中心最远的城市,即点 p,其最大值如下 Min[dist(p,c1),dist(p,c2),dist(p,c3),…。距离(p,ci)]
示例(上图中 k = 3) a)让第一个任意拾取的顶点为 0。 b)下一个顶点是 1,因为 1 是距离 0 最远的顶点。 c)剩下的城市是 2 和 3。计算它们与已选中心(0 和 1)的距离。贪婪算法基本上计算以下值。 从 2 到已经考虑的中心的所有距离的最小值 Min[dist(2,0),dist(2,1)] = Min[7,8] = 7 从 3 到已经考虑的中心的所有距离的最小值 Min[dist(3,0),dist(3,1)] = Min[6,5] = 5 计算上述值后,选择城市 2 作为对应于 2 的最大值。
请注意,贪婪算法没有给出 k = 2 的最佳解,因为这只是一个近似算法,其界限是最佳值的两倍。
证明上述贪婪算法是 2 近似。 让 OPT 为最优解中一个城市到中心的最大距离。我们需要证明从贪婪算法获得的最大距离是 2*OPT。 可以用矛盾做证明。 a)假设最远点到所有中心的距离为> 2 OPT。 b)这意味着所有中心之间的距离也是> 2 OPT。 c)我们有 k + 1 个点,每对之间有距离> 2 个 OPT。 d)每个点都有一个距离< = OPT 的最优解的中心。 e)最优解中存在一对中心 X 相同的点(鸽子洞原理:k 个最优中心,k+1 个点) f)它们之间的距离最多为 2 OPT(三角不等式),这是一个矛盾。
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
int maxindex(int* dist, int n)
{
int mi = 0;
for (int i = 0; i < n; i++) {
if (dist[i] > dist[mi])
mi = i;
}
return mi;
}
void selectKcities(int n, int weights[4][4], int k)
{
int* dist = new int[n];
vector<int> centers;
for (int i = 0; i < n; i++) {
dist[i] = INT_MAX;
}
// index of city having the
// maximum distance to it's
// closest center
int max = 0;
for (int i = 0; i < k; i++) {
centers.push_back(max);
for (int j = 0; j < n; j++) {
// updating the distance
// of the cities to their
// closest centers
dist[j] = min(dist[j], weights[max][j]);
}
// updating the index of the
// city with the maximum
// distance to it's closest center
max = maxindex(dist, n);
}
// Printing the maximum distance
// of a city to a center
// that is our answer
cout << endl << dist[max] << endl;
// Printing the cities that
// were chosen to be made
// centers
for (int i = 0; i < centers.size(); i++) {
cout << centers[i] << " ";
}
cout << endl;
}
// Driver Code
int main()
{
int n = 4;
int weights[4][4] = { { 0, 4, 8, 5 },
{ 4, 0, 10, 7 },
{ 8, 10, 0, 9 },
{ 5, 7, 9, 0 } };
int k = 2;
// Function Call
selectKcities(n, weights, k);
}
// Contributed by Balu Nagar
Java 语言(一种计算机语言,尤用于创建网站)
// Java program for the above approach
import java.util.*;
class GFG{
static int maxindex(int[] dist, int n)
{
int mi = 0;
for(int i = 0; i < n; i++)
{
if (dist[i] > dist[mi])
mi = i;
}
return mi;
}
static void selectKcities(int n, int weights[][],
int k)
{
int[] dist = new int[n];
ArrayList<Integer> centers = new ArrayList<>();
for(int i = 0; i < n; i++)
{
dist[i] = Integer.MAX_VALUE;
}
// Index of city having the
// maximum distance to it's
// closest center
int max = 0;
for(int i = 0; i < k; i++)
{
centers.add(max);
for(int j = 0; j < n; j++)
{
// Updating the distance
// of the cities to their
// closest centers
dist[j] = Math.min(dist[j],
weights[max][j]);
}
// Updating the index of the
// city with the maximum
// distance to it's closest center
max = maxindex(dist, n);
}
// Printing the maximum distance
// of a city to a center
// that is our answer
System.out.println(dist[max]);
// Printing the cities that
// were chosen to be made
// centers
for(int i = 0; i < centers.size(); i++)
{
System.out.print(centers.get(i) + " ");
}
System.out.print("\n");
}
// Driver Code
public static void main(String[] args)
{
int n = 4;
int[][] weights = new int[][]{ { 0, 4, 8, 5 },
{ 4, 0, 10, 7 },
{ 8, 10, 0, 9 },
{ 5, 7, 9, 0 } };
int k = 2;
// Function Call
selectKcities(n, weights, k);
}
}
// This code is contributed by nspatilme
Python 3
# Python3 program for the above approach
def maxindex(dist, n):
mi = 0
for i in range(n):
if (dist[i] > dist[mi]):
mi = i
return mi
def selectKcities(n, weights, k):
dist = [0]*n
centers = []
for i in range(n):
dist[i] = 10**9
# index of city having the
# maximum distance to it's
# closest center
max = 0
for i in range(k):
centers.append(max)
for j in range(n):
# updating the distance
# of the cities to their
# closest centers
dist[j] = min(dist[j], weights[max][j])
# updating the index of the
# city with the maximum
# distance to it's closest center
max = maxindex(dist, n)
# Printing the maximum distance
# of a city to a center
# that is our answer
# print()
print(dist[max])
# Printing the cities that
# were chosen to be made
# centers
for i in centers:
print(i, end = " ")
# Driver Code
if __name__ == '__main__':
n = 4
weights = [ [ 0, 4, 8, 5 ],
[ 4, 0, 10, 7 ],
[ 8, 10, 0, 9 ],
[ 5, 7, 9, 0 ] ]
k = 2
# Function Call
selectKcities(n, weights, k)
# This code is contributed by mohit kumar 29.
C
using System;
using System.Collections.Generic;
public class GFG{
static int maxindex(int[] dist, int n)
{
int mi = 0;
for(int i = 0; i < n; i++)
{
if (dist[i] > dist[mi])
mi = i;
}
return mi;
}
static void selectKcities(int n, int[,] weights,
int k)
{
int[] dist = new int[n];
List<int> centers = new List<int>();
for(int i = 0; i < n; i++)
{
dist[i] = Int32.MaxValue;
}
// Index of city having the
// maximum distance to it's
// closest center
int max = 0;
for(int i = 0; i < k; i++)
{
centers.Add(max);
for(int j = 0; j < n; j++)
{
// Updating the distance
// of the cities to their
// closest centers
dist[j] = Math.Min(dist[j],
weights[max,j]);
}
// Updating the index of the
// city with the maximum
// distance to it's closest center
max = maxindex(dist, n);
}
// Printing the maximum distance
// of a city to a center
// that is our answer
Console.WriteLine(dist[max]);
// Printing the cities that
// were chosen to be made
// centers
for(int i = 0; i < centers.Count; i++)
{
Console.Write(centers[i] + " ");
}
Console.Write("\n");
}
// Driver Code
static public void Main (){
int n = 4;
int[,] weights = new int[,]{ { 0, 4, 8, 5 },
{ 4, 0, 10, 7 },
{ 8, 10, 0, 9 },
{ 5, 7, 9, 0 } };
int k = 2;
// Function Call
selectKcities(n, weights, k);
}
}
// This code is contributed by avanitrachhadiya2155.
java 描述语言
<script>
// Javascript program for the above approach
function maxindex(dist,n)
{
let mi = 0;
for(let i = 0; i < n; i++)
{
if (dist[i] > dist[mi])
mi = i;
}
return mi;
}
function selectKcities(n,weights,k)
{
let dist = new Array(n);
let centers = [];
for(let i = 0; i < n; i++)
{
dist[i] = Number.MAX_VALUE;
}
// Index of city having the
// maximum distance to it's
// closest center
let max = 0;
for(let i = 0; i < k; i++)
{
centers.push(max);
for(let j = 0; j < n; j++)
{
// Updating the distance
// of the cities to their
// closest centers
dist[j] = Math.min(dist[j],
weights[max][j]);
}
// Updating the index of the
// city with the maximum
// distance to it's closest center
max = maxindex(dist, n);
}
// Printing the maximum distance
// of a city to a center
// that is our answer
document.write(dist[max]+"<br>");
// Printing the cities that
// were chosen to be made
// centers
for(let i = 0; i < centers.length; i++)
{
document.write(centers[i] + " ");
}
document.write("<br>");
}
// Driver Code
let n = 4;
let weights = [ [ 0, 4, 8, 5 ],
[ 4, 0, 10, 7 ],
[ 8, 10, 0, 9 ],
[ 5, 7, 9, 0 ] ]
let k = 2
selectKcities(n, weights, k)
// This code is contributed by unknown2108
</script>
Output
5
0 2
来源: http://algo2.iti.kit.edu/vanstee/courses/kcenter.pdf 本文由 Harshit 供稿。如果你发现任何不正确的地方,或者你想分享更多关于上面讨论的话题的信息,请写评论。
版权属于:月萌API www.moonapi.com,转载请注明出处