两个给定数组中最长公共素子序列的长度

原文:https://www . geeksforgeeks . org/两个给定数组中最长公共素子序列的长度/

给定两个长度分别为 NM数组 arr1[]arr2[] ,任务是从两个给定数组中找出最长公共素数 子序列 的长度。

示例:

输入: arr1[] = {1,2,3,4,5,6,7,8,9},arr2[] = {2,5,6,3,7,9,8} 输出: 4 解释: 两个数组中最长的公共素子序列是{2,3,5,7}。

输入: arr1[] = {1,3,5,7,9},arr2[] = {2,4,6,8,10} 输出: 0 说明: 在上述数组中,arr1[]的素子序列为{1,3,5,7},arr2[]为{2}。因此,两个数组中不存在公共素数。因此,结果是 0。

天真的做法:最简单的想法是考虑arr 1【】的所有子序列,检查这个子序列中的所有数字是否都是质数并且出现在arr 2【】中。然后找出这些子序列的最长长度。

时间复杂度:O(M * 2N) T5】辅助空间: O(N)

有效方法:想法是从两个数组中找到所有素数,然后使用动态编程从它们中找到最长的公共素数子序列。按照以下步骤解决问题:

  1. 使用厄拉多塞算法找出数组最小元素和数组最大元素之间的所有素数
  2. 存储数组 arr1[]arr2[] 中的素数序列。
  3. 找到两个素数序列的 LCS

下面是上述方法的实现:

C++

// CPP implementation of the above approach
#include <bits/stdc++.h>
using namespace std;

// Function to calculate the LCS
int recursion(vector<int> arr1,
              vector<int> arr2, int i,
              int j, map<pair<int, int>,
              int> dp)
{
    if (i >= arr1.size() or j >= arr2.size())
        return 0;
    pair<int, int> key = { i, j };
    if (arr1[i] == arr2[j])
        return 1
               + recursion(arr1, arr2,
                            i + 1, j + 1,
                           dp);
    if (dp.find(key) != dp.end())
        return dp[key];

    else
        dp[key] = max(recursion(arr1, arr2,
                                i + 1, j, dp),
                      recursion(arr1, arr2, i,
                                j + 1, dp));
    return dp[key];
}

// Function to generate
// all the possible
// prime numbers
vector<int> primegenerator(int n)
{
    int cnt = 0;
    vector<int> primes(n + 1, true);
    int p = 2;
    while (p * p <= n)
    {
        for (int i = p * p; i <= n; i += p)
            primes[i] = false;
        p += 1;
    }
    return primes;
}

// Function which returns the
// length of longest common
// prime subsequence
int longestCommonSubseq(vector<int> arr1,
                        vector<int> arr2)
{

    // Minimum element of
    // both arrays
    int min1 = *min_element(arr1.begin(),
                            arr1.end());
    int min2 = *min_element(arr2.begin(),
                            arr2.end());

    // Maximum element of
    // both arrays
    int max1 = *max_element(arr1.begin(),
                            arr1.end());
    int max2 = *max_element(arr2.begin(),
                            arr2.end());

    // Generating all primes within
    // the max range of arr1
    vector<int> a = primegenerator(max1);

    // Generating all primes within
    // the max range of arr2
    vector<int> b = primegenerator(max2);

    vector<int> finala;
    vector<int> finalb;

    // Store precomputed values
    map<pair<int, int>, int> dp;

    // Store all primes in arr1[]
    for (int i = min1; i <= max1; i++)
    {
        if (find(arr1.begin(), arr1.end(), i)
            != arr1.end()
            and a[i] == true)
            finala.push_back(i);
    }

    // Store all primes of arr2[]
    for (int i = min2; i <= max2; i++)
    {
        if (find(arr2.begin(), arr2.end(), i)
            != arr2.end()
            and b[i] == true)
            finalb.push_back(i);
    }

    // Calculating the LCS
    return recursion(finala, finalb, 0, 0, dp);
}

// Driver Code
int main()
{
    vector<int> arr1 = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
    vector<int> arr2 = { 2, 5, 6, 3, 7, 9, 8 };

    // Function Call
    cout << longestCommonSubseq(arr1, arr2);
}

Java 语言(一种计算机语言,尤用于创建网站)

// JAVA implementation of the above approach
import java.util.*;
import java.io.*;
import java.math.*;
public class GFG
{

  // Function to calculate the LCS
  static int recursion(ArrayList<Integer> arr1,
                       ArrayList<Integer> arr2, int i,
                       int j, Map<ArrayList<Integer>,
                       Integer> dp)
  {
    if (i >= arr1.size() || j >= arr2.size())
      return 0;
    ArrayList<Integer> key = new ArrayList<>();
    key.add(i);
    key.add(j);
    if (arr1.get(i) == arr2.get(j))
      return 1 + recursion(arr1, arr2,
                           i + 1, j + 1,
                           dp);
    if (dp.get(key) != dp.get(dp.size()-1))
      return dp.get(key);

    else
      dp.put(key,Math.max(recursion(arr1, arr2,
                                    i + 1, j, dp),
                          recursion(arr1, arr2, i,
                                    j + 1, dp)));
    return dp.get(key);
  }

  // Function to generate
  // all the possible
  // prime numbers
  static ArrayList<Boolean> primegenerator(int n)
  {
    int cnt = 0;
    ArrayList<Boolean> primes = new ArrayList<>();
    for(int i = 0; i < n + 1; i++)
      primes.add(true);
    int p = 2;
    while (p * p <= n)
    {
      for (int i = p * p; i <= n; i += p)
        primes.set(i,false);
      p += 1;
    }
    return primes;
  }

  // Function that returns the Minimum element of an ArrayList
  static int min_element(ArrayList<Integer> al)
  {
    int min = Integer.MAX_VALUE;
    for(int i = 0; i < al.size(); i++)
    {
      min=Math.min(min, al.get(i));
    }
    return min;
  }

  // Function that returns the Minimum element of an ArrayList
  static int max_element(ArrayList<Integer> al)
  {
    int max = Integer.MIN_VALUE;
    for(int i = 0; i < al.size(); i++)
    {
      max = Math.max(max, al.get(i));
    }
    return max;
  }

  // Function which returns the
  // length of longest common
  // prime subsequence
  static int longestCommonSubseq(ArrayList<Integer> arr1,
                                 ArrayList<Integer> arr2)
  {

    // Minimum element of
    // both arrays
    int min1 = min_element(arr1);
    int min2 = min_element(arr2);

    // Maximum element of
    // both arrays
    int max1 = max_element(arr1);
    int max2 = max_element(arr2);

    // Generating all primes within
    // the max range of arr1
    ArrayList<Boolean> a = primegenerator(max1);

    // Generating all primes within
    // the max range of arr2
    ArrayList<Boolean> b = primegenerator(max2);
    ArrayList<Integer> finala = new ArrayList<>();
    ArrayList<Integer> finalb = new ArrayList<>();

    // Store precomputed values
    Map<ArrayList<Integer>,Integer> dp =
      new HashMap <ArrayList<Integer>,Integer> ();

    // Store all primes in arr1[]
    for (int i = min1; i <= max1; i++)
    {
      if (arr1.contains(i)
          && a.get(i) == true)
        finala.add(i);
    }

    // Store all primes of arr2[]
    for (int i = min2; i <= max2; i++)
    {
      if (arr2.contains(i)
          && b.get(i) == true)
        finalb.add(i);
    }

    // Calculating the LCS
    return recursion(finala, finalb, 0, 0, dp);
  }

  // Driver Code
  public static void main(String args[])
  {
    int a1[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
    int a2[] = { 2, 5, 6, 3, 7, 9, 8 };

    // Converting into list
    ArrayList<Integer> arr1 = new ArrayList<Integer>();
    for(int i = 0; i < a1.length; i++)
      arr1.add(a1[i]);

    ArrayList<Integer> arr2 = new ArrayList<Integer>();
    for(int i = 0; i < a2.length; i++)
      arr2.add(a2[i]);

    // Function Call
    System.out.println(longestCommonSubseq(arr1, arr2));
  }
}

// This code is contributed by jyoti369

Python 3

# Python implementation of the above approach

# Function to calculate the LCS

def recursion(arr1, arr2, i, j, dp):
    if i >= len(arr1) or j >= len(arr2):
        return 0
    key = (i, j)
    if arr1[i] == arr2[j]:
        return 1 + recursion(arr1, arr2,
                             i + 1, j + 1, dp)
    if key in dp:
        return dp[key]
    else:
        dp[key] = max(recursion(arr1, arr2,
                                i + 1, j, dp),
                      recursion(arr1, arr2,
                                i, j + 1, dp))
    return dp[key]

# Function to generate
# all the possible
# prime numbers

def primegenerator(n):
    cnt = 0
    primes = [True for _ in range(n + 1)]
    p = 2
    while p * p <= n:
        for i in range(p * p, n + 1, p):
            primes[i] = False
        p += 1
    return primes

# Function which returns the
# length of longest common
# prime subsequence

def longestCommonSubseq(arr1, arr2):

    # Minimum element of
    # both arrays
    min1 = min(arr1)
    min2 = min(arr2)

    # Maximum element of
    # both arrays
    max1 = max(arr1)
    max2 = max(arr2)

    # Generating all primes within
    # the max range of arr1
    a = primegenerator(max1)

    # Generating all primes within
    # the max range of arr2
    b = primegenerator(max2)

    finala = []
    finalb = []

    # Store precomputed values
    dp = dict()

    # Store all primes in arr1[]
    for i in range(min1, max1 + 1):
        if i in arr1 and a[i] == True:
            finala.append(i)

    # Store all primes of arr2[]
    for i in range(min2, max2 + 1):
        if i in arr2 and b[i] == True:
            finalb.append(i)

    # Calculating the LCS
    return recursion(finala, finalb,
                     0, 0, dp)

# Driver Code
arr1 = [1, 2, 3, 4, 5, 6, 7, 8, 9]
arr2 = [2, 5, 6, 3, 7, 9, 8]

# Function Call
print(longestCommonSubseq(arr1, arr2))

Output

4

时间复杂度:O(N * M) T3】辅助空间: O(N * M)