未排序数组中第K
个最小/最大元素 | 系列 1
原文: https://www.geeksforgeeks.org/kth-smallestlargest-element-unsorted-array/
给定一个数组和一个数k
(其中k
小于数组的大小),我们需要找到给定数组中第k
个最小的元素。 假定有 11 个数组元素是不同的。
示例:
输入:
arr[] = {7, 10, 4, 4, 3, 20, 15}
k = 3
输出: 7
输入:
arr[] = {7, 10, 4, 3, 20, 15}
k = 4
输出: 10
我们已经讨论了打印k
个最大元素的类似的问题。
方法 1(简单解决方案):
一个简单的解决方案是使用O(N log N)
排序算法对给定数组进行排序,例如归并排序, 堆排序等,并返回已排序数组中索引k-1
处的元素。
该解决方案的时间复杂度为O(N log N)
。
C++
// Simple C++ program to find k'th smallest element
#include <algorithm>
#include <iostream>
using namespace std;
// Function to return k'th smallest element in a given array
int kthSmallest(int arr[], int n, int k)
{
// Sort the given array
sort(arr, arr + n);
// Return k'th element in the sorted array
return arr[k - 1];
}
// Driver program to test above methods
int main()
{
int arr[] = { 12, 3, 5, 7, 19 };
int n = sizeof(arr) / sizeof(arr[0]), k = 2;
cout << "K'th smallest element is " << kthSmallest(arr, n, k);
return 0;
}
Java
// Java code for kth smallest element
// in an array
import java.util.Arrays;
import java.util.Collections;
class GFG {
// Function to return k'th smallest
// element in a given array
public static int kthSmallest(Integer[] arr,
int k)
{
// Sort the given array
Arrays.sort(arr);
// Return k'th element in
// the sorted array
return arr[k - 1];
}
// driver program
public static void main(String[] args)
{
Integer arr[] = new Integer[] { 12, 3, 5, 7, 19 };
int k = 2;
System.out.print("K'th smallest element is " + kthSmallest(arr, k));
}
}
// This code is contributed by Chhavi
Python3
# Python3 program to find k'th smallest
# element
# Function to return k'th smallest
# element in a given array
def kthSmallest(arr, n, k):
# Sort the given array
arr.sort()
# Return k'th element in the
# sorted array
return arr[k-1]
# Driver code
if __name__=='__main__':
arr = [12, 3, 5, 7, 19]
n = len(arr)
k = 2
print("K'th smallest element is",
kthSmallest(arr, n, k))
# This code is contributed by
# Shrikant13
C#
// C# code for kth smallest element
// in an array
using System;
class GFG {
// Function to return k'th smallest
// element in a given array
public static int kthSmallest(int[] arr,
int k)
{
// Sort the given array
Array.Sort(arr);
// Return k'th element in
// the sorted array
return arr[k - 1];
}
// driver program
public static void Main()
{
int[] arr = new int[] { 12, 3, 5,
7, 19 };
int k = 2;
Console.Write("K'th smallest element"
+ " is " + kthSmallest(arr, k));
}
}
// This code is contributed by nitin mittal.
PHP
<?php
// Simple PHP program to find
// k'th smallest element
// Function to return k'th smallest
// element in a given array
function kthSmallest($arr, $n, $k)
{
// Sort the given array
sort($arr);
// Return k'th element
// in the sorted array
return $arr[$k - 1];
}
// Driver Code
$arr = array(12, 3, 5, 7, 19);
$n =count($arr);
$k = 2;
echo "K'th smallest element is ", kthSmallest($arr, $n, $k);
// This code is contributed by anuj_67\.
?>
输出:
K'th smallest element is 5
方法 2(使用最小堆 – 堆选择):
我们发现时间复杂度中的第k
个最小元素要好于O(N log N)
。 一个简单的优化方法是创建给定n
个元素的最小堆,并调用k
次extractMin()
。
以下是上述方法的 C++ 实现。
// A C++ program to find k'th smallest element using min heap
#include <climits>
#include <iostream>
using namespace std;
// Prototype of a utility function to swap two integers
void swap(int* x, int* y);
// A class for Min Heap
class MinHeap {
int* harr; // pointer to array of elements in heap
int capacity; // maximum possible size of min heap
int heap_size; // Current number of elements in min heap
public:
MinHeap(int a[], int size); // Constructor
void MinHeapify(int i); // To minheapify subtree rooted with index i
int parent(int i) { return (i - 1) / 2; }
int left(int i) { return (2 * i + 1); }
int right(int i) { return (2 * i + 2); }
int extractMin(); // extracts root (minimum) element
int getMin() { return harr[0]; } // Returns minimum
};
MinHeap::MinHeap(int a[], int size)
{
heap_size = size;
harr = a; // store address of array
int i = (heap_size - 1) / 2;
while (i >= 0) {
MinHeapify(i);
i--;
}
}
// Method to remove minimum element (or root) from min heap
int MinHeap::extractMin()
{
if (heap_size == 0)
return INT_MAX;
// Store the minimum vakue.
int root = harr[0];
// If there are more than 1 items, move the last item to root
// and call heapify.
if (heap_size > 1) {
harr[0] = harr[heap_size - 1];
MinHeapify(0);
}
heap_size--;
return root;
}
// A recursive method to heapify a subtree with root at given index
// This method assumes that the subtrees are already heapified
void MinHeap::MinHeapify(int i)
{
int l = left(i);
int r = right(i);
int smallest = i;
if (l < heap_size && harr[l] < harr[i])
smallest = l;
if (r < heap_size && harr[r] < harr[smallest])
smallest = r;
if (smallest != i) {
swap(&harr[i], &harr[smallest]);
MinHeapify(smallest);
}
}
// A utility function to swap two elements
void swap(int* x, int* y)
{
int temp = *x;
*x = *y;
*y = temp;
}
// Function to return k'th smallest element in a given array
int kthSmallest(int arr[], int n, int k)
{
// Build a heap of n elements: O(n) time
MinHeap mh(arr, n);
// Do extract min (k-1) times
for (int i = 0; i < k - 1; i++)
mh.extractMin();
// Return root
return mh.getMin();
}
// Driver program to test above methods
int main()
{
int arr[] = { 12, 3, 5, 7, 19 };
int n = sizeof(arr) / sizeof(arr[0]), k = 2;
cout << "K'th smallest element is " << kthSmallest(arr, n, k);
return 0;
}
输出:
K'th smallest element is 5
该解决方案的时间复杂度为O(n + kLogn)
。
方法 3(使用最大堆):
我们也可以使用最大堆来找到第k
个最小元素。 以下是算法。
-
建立给定数组的前
k
个元素(arr[0]
至arr[k-1]
)的最大堆MH
。 -
对于每个元素,在第
k
个元素之后(arr[k]
至arr[n-1]
),将其与MH
的根进行比较。-
如果元素小于根,则将其设为根并为
MH
调用建堆, -
否则将其忽略。
-
步骤 2 为O((n-k) * logk)
。
- 最后,
MH
的根是第k
个最小元素。
该解决方案的时间复杂度为O(k + (n-k) * Logk)
。
以下是上述算法的 C++ 实现:
// A C++ program to find k'th smallest element using max heap
#include <climits>
#include <iostream>
using namespace std;
// Prototype of a utility function to swap two integers
void swap(int* x, int* y);
// A class for Max Heap
class MaxHeap {
int* harr; // pointer to array of elements in heap
int capacity; // maximum possible size of max heap
int heap_size; // Current number of elements in max heap
public:
MaxHeap(int a[], int size); // Constructor
void maxHeapify(int i); // To maxHeapify subtree rooted with index i
int parent(int i) { return (i - 1) / 2; }
int left(int i) { return (2 * i + 1); }
int right(int i) { return (2 * i + 2); }
int extractMax(); // extracts root (maximum) element
int getMax() { return harr[0]; } // Returns maximum
// to replace root with new node x and heapify() new root
void replaceMax(int x)
{
harr[0] = x;
maxHeapify(0);
}
};
MaxHeap::MaxHeap(int a[], int size)
{
heap_size = size;
harr = a; // store address of array
int i = (heap_size - 1) / 2;
while (i >= 0) {
maxHeapify(i);
i--;
}
}
// Method to remove maximum element (or root) from max heap
int MaxHeap::extractMax()
{
if (heap_size == 0)
return INT_MAX;
// Store the maximum vakue.
int root = harr[0];
// If there are more than 1 items, move the last item to root
// and call heapify.
if (heap_size > 1) {
harr[0] = harr[heap_size - 1];
maxHeapify(0);
}
heap_size--;
return root;
}
// A recursive method to heapify a subtree with root at given index
// This method assumes that the subtrees are already heapified
void MaxHeap::maxHeapify(int i)
{
int l = left(i);
int r = right(i);
int largest = i;
if (l < heap_size && harr[l] > harr[i])
largest = l;
if (r < heap_size && harr[r] > harr[largest])
largest = r;
if (largest != i) {
swap(&harr[i], &harr[largest]);
maxHeapify(largest);
}
}
// A utility function to swap two elements
void swap(int* x, int* y)
{
int temp = *x;
*x = *y;
*y = temp;
}
// Function to return k'th largest element in a given array
int kthSmallest(int arr[], int n, int k)
{
// Build a heap of first k elements: O(k) time
MaxHeap mh(arr, k);
// Process remaining n-k elements. If current element is
// smaller than root, replace root with current element
for (int i = k; i < n; i++)
if (arr[i] < mh.getMax())
mh.replaceMax(arr[i]);
// Return root
return mh.getMax();
}
// Driver program to test above methods
int main()
{
int arr[] = { 12, 3, 5, 7, 19 };
int n = sizeof(arr) / sizeof(arr[0]), k = 4;
cout << "K'th smallest element is " << kthSmallest(arr, n, k);
return 0;
}
输出:
K'th smallest element is 12
方法 4(快速选择):
如果在第一步中将快速排序用作排序算法,则这是对方法 1 的优化。 在快速排序中,我们选择一个枢轴元素,然后将枢轴元素移动到正确的位置并围绕该数组对其进行分区。 这个想法不是要进行完整的快速排序,而是停在枢轴本身是第k
个最小元素的位置。 同样,不要针对枢轴的左侧和右侧重复出现,而是根据枢轴的位置针对其中之一进行重复播放。 该方法最坏的情况是时间复杂度为 O(n^2)
,但平均而言,它的工作时间为O(n)
。
C++
#include <climits>
#include <iostream>
using namespace std;
int partition(int arr[], int l, int r);
// This function returns k'th smallest element in arr[l..r] using
// QuickSort based method. ASSUMPTION: ALL ELEMENTS IN ARR[] ARE DISTINCT
int kthSmallest(int arr[], int l, int r, int k)
{
// If k is smaller than number of elements in array
if (k > 0 && k <= r - l + 1) {
// Partition the array around last element and get
// position of pivot element in sorted array
int pos = partition(arr, l, r);
// If position is same as k
if (pos - l == k - 1)
return arr[pos];
if (pos - l > k - 1) // If position is more, recur for left subarray
return kthSmallest(arr, l, pos - 1, k);
// Else recur for right subarray
return kthSmallest(arr, pos + 1, r, k - pos + l - 1);
}
// If k is more than number of elements in array
return INT_MAX;
}
void swap(int* a, int* b)
{
int temp = *a;
*a = *b;
*b = temp;
}
// Standard partition process of QuickSort(). It considers the last
// element as pivot and moves all smaller element to left of it
// and greater elements to right
int partition(int arr[], int l, int r)
{
int x = arr[r], i = l;
for (int j = l; j <= r - 1; j++) {
if (arr[j] <= x) {
swap(&arr[i], &arr[j]);
i++;
}
}
swap(&arr[i], &arr[r]);
return i;
}
// Driver program to test above methods
int main()
{
int arr[] = { 12, 3, 5, 7, 4, 19, 26 };
int n = sizeof(arr) / sizeof(arr[0]), k = 3;
cout << "K'th smallest element is " << kthSmallest(arr, 0, n - 1, k);
return 0;
}
Java
// Java code for kth smallest element in an array
import java.util.Arrays;
import java.util.Collections;
class GFG {
// Standard partition process of QuickSort.
// It considers the last element as pivot
// and moves all smaller element to left of
// it and greater elements to right
public static int partition(Integer[] arr, int l,
int r)
{
int x = arr[r], i = l;
for (int j = l; j <= r - 1; j++) {
if (arr[j] <= x) {
// Swapping arr[i] and arr[j]
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
i++;
}
}
// Swapping arr[i] and arr[r]
int temp = arr[i];
arr[i] = arr[r];
arr[r] = temp;
return i;
}
// This function returns k'th smallest element
// in arr[l..r] using QuickSort based method.
// ASSUMPTION: ALL ELEMENTS IN ARR[] ARE DISTINCT
public static int kthSmallest(Integer[] arr, int l,
int r, int k)
{
// If k is smaller than number of elements
// in array
if (k > 0 && k <= r - l + 1) {
// Partition the array around last
// element and get position of pivot
// element in sorted array
int pos = partition(arr, l, r);
// If position is same as k
if (pos - l == k - 1)
return arr[pos];
// If position is more, recur for
// left subarray
if (pos - l > k - 1)
return kthSmallest(arr, l, pos - 1, k);
// Else recur for right subarray
return kthSmallest(arr, pos + 1, r, k - pos + l - 1);
}
// If k is more than number of elements
// in array
return Integer.MAX_VALUE;
}
// Driver program to test above methods
public static void main(String[] args)
{
Integer arr[] = new Integer[] { 12, 3, 5, 7, 4, 19, 26 };
int k = 3;
System.out.print("K'th smallest element is " + kthSmallest(arr, 0, arr.length - 1, k));
}
}
// This code is contributed by Chhavi
Python 3
# This function returns k'th smallest element
# in arr[l..r] using QuickSort based method.
# ASSUMPTION: ALL ELEMENTS IN ARR[] ARE DISTINCT
import sys
def kthSmallest(arr, l, r, k):
# If k is smaller than number of
# elements in array
if (k > 0 and k <= r - l + 1):
# Partition the array around last
# element and get position of pivot
# element in sorted array
pos = partition(arr, l, r)
# If position is same as k
if (pos - l == k - 1):
return arr[pos]
if (pos - l > k - 1): # If position is more,
# recur for left subarray
return kthSmallest(arr, l, pos - 1, k)
# Else recur for right subarray
return kthSmallest(arr, pos + 1, r,
k - pos + l - 1)
# If k is more than number of
# elements in array
return sys.maxsize
# Standard partition process of QuickSort().
# It considers the last element as pivot and
# moves all smaller element to left of it
# and greater elements to right
def partition(arr, l, r):
x = arr[r]
i = l
for j in range(l, r):
if (arr[j] <= x):
arr[i], arr[j] = arr[j], arr[i]
i += 1
arr[i], arr[r] = arr[r], arr[i]
return i
# Driver Code
if __name__ == "__main__":
arr = [12, 3, 5, 7, 4, 19, 26]
n = len(arr)
k = 3;
print("K'th smallest element is",
kthSmallest(arr, 0, n - 1, k))
# This code is contributed by ita_c
C
// C# code for kth smallest element
// in an array
using System;
class GFG {
// Standard partition process of QuickSort.
// It considers the last element as pivot
// and moves all smaller element to left of
// it and greater elements to right
public static int partition(int[] arr,
int l, int r)
{
int x = arr[r], i = l;
int temp = 0;
for (int j = l; j <= r - 1; j++) {
if (arr[j] <= x) {
// Swapping arr[i] and arr[j]
temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
i++;
}
}
// Swapping arr[i] and arr[r]
temp = arr[i];
arr[i] = arr[r];
arr[r] = temp;
return i;
}
// This function returns k'th smallest
// element in arr[l..r] using QuickSort
// based method. ASSUMPTION: ALL ELEMENTS
// IN ARR[] ARE DISTINCT
public static int kthSmallest(int[] arr, int l,
int r, int k)
{
// If k is smaller than number
// of elements in array
if (k > 0 && k <= r - l + 1) {
// Partition the array around last
// element and get position of pivot
// element in sorted array
int pos = partition(arr, l, r);
// If position is same as k
if (pos - l == k - 1)
return arr[pos];
// If position is more, recur for
// left subarray
if (pos - l > k - 1)
return kthSmallest(arr, l, pos - 1, k);
// Else recur for right subarray
return kthSmallest(arr, pos + 1, r,
k - pos + l - 1);
}
// If k is more than number
// of elements in array
return int.MaxValue;
}
// Driver Code
public static void Main()
{
int[] arr = { 12, 3, 5, 7, 4, 19, 26 };
int k = 3;
Console.Write("K'th smallest element is " + kthSmallest(arr, 0, arr.Length - 1, k));
}
}
// This code is contributed
// by 29AjayKumar
输出:
K'th smallest element is 5
有两种以上的解决方案比上面讨论的解决方案更好:一种解决方案是对quickSelect()
进行随机化处理,另一种解决方案是最坏情况的线性时间算法(请参阅以下文章)。
版权属于:月萌API www.moonapi.com,转载请注明出处