最小割集 2 的卡尔格算法(分析与应用)
原文:https://www . geeksforgeeks . org/kar gers-最小割集算法-2-分析和应用/
我们已经在下面介绍和讨论了第 1 集的卡尔格算法。
1) Initialize contracted graph CG as copy of original graph
2) While there are more than 2 vertices.
a) Pick a random edge (u, v) in the contracted graph.
b) Merge (or contract) u and v into a single vertex (update
the contracted graph).
c) Remove self-loops
3) Return cut represented by two vertices.
如前一篇文章所述,卡尔格算法并不总是能找到最小割。在这篇文章中,讨论了找到最小割的概率。
卡尔格算法产生的割为最小割的概率大于等于 1/(n 2 )
证明: 假设给定图有唯一的最小割,且最小割中有 C 条边,边为{e 1 ,e 2 ,e 3 ,..e c }。当且仅当集合{e 1 、e 2 、e 3 中没有边时,卡尔格算法才会产生此最小割,..e c 在上述算法的主 while 循环中迭代删除。
c is number of edges in min-cut
m is total number of edges
n is total number of vertices
S1 = Event that one of the edges in {e1, e2,
e3, .. ec} is chosen in 1st iteration.
S2 = Event that one of the edges in {e1, e2,
e3, .. ec} is chosen in 2nd iteration.
S3 = Event that one of the edges in {e1, e2,
e3, .. ec} is chosen in 3rd iteration.
..................
..................
The cut produced by Karger's algorithm would be a min-cut if none of the above
events happen.
So the required probability is P[S1' ∩ S2' ∩ S3' ∩ ............]
第一次迭代选择最小割边的概率:
Let us calculate P[S1']
P[S1] = c/m
P[S1'] = (1 - c/m)
Above value is in terms of m (or edges), let us convert
it in terms of n (or vertices) using below 2 facts..
1) Since size of min-cut is c, degree of all vertices must be greater
than or equal to c.
2) As per Handshaking Lemma, sum of degrees of all vertices = 2m
From above two facts, we can conclude below.
n*c <= 2m m>= nc/2
P[S1] <= c (cn 2) <="2/n" p[s1] <= c (cn 2) <="2/n" p[s<sub>1<sup>'</sup>] >= (1-2/n) ------------(1)=>=>=></sub>
第二次迭代选择最小割边的概率:
P[S1' ∩ S2'] = P[S2' | S1' ] * P[S1']
In the above expression, we know value of P[S1'] >= (1-2/n)
P[S2' | S1'] is conditional probability that is, a min cut is
not chosen in second iteration given that it is not chosen in first iteration
Since there are total (n-1) edges left now and number of cut edges is still c,
we can replace n by n-1 in inequality (1). So we get.
P[S2' | S1' ] >= (1 - 2/(n-1))
P[S1' ∩ S2'] >= (1-2/n) x (1-2/(n-1))
在所有迭代中选择最小割边的概率:
P[S1' ∩ S2' ∩ S3' ∩.......... ∩ Sn-2']
>= [1 - 2/n] * [1 - 2/(n-1)] * [1 - 2/(n-2)] * [1 - 2/(n-3)] *...
... * [1 - 2/(n - (n-4)] * [1 - 2/(n - (n-3)]
>= [(n-2)/n] * [(n-3)/(n-1)] * [(n-4)/(n-2)] * .... 2/4 * 2/3
>= 2/(n * (n-1))
>= 1/n2
如何增加成功概率? 以上基本算法成功的概率很少。例如,对于有 10 个节点的图,找到最小割的概率大于或等于 1/100。通过重复运行基本算法并返回找到的所有切割的最小值,可以增加概率。
应用程序: 1) 在战争情况下,一方会有兴趣找到破坏敌方通信网络的最小数量的链路。
2) 最小割问题可用于研究网络的可靠性(可失效的最小边数)。
3) 网络优化研究(求最大流量)。
4) 聚类问题(像关联规则一样的边)匹配问题(有向图中最小割的 NC 算法将导致二分图中最大匹配的 NC 算法)
5) 匹配问题(有向图中最小割的 NC 算法将导致二分图中最大匹配的 NC 算法)
资料来源: https://www . YouTube . com/watch?v =-uuivvyhpas http://disi . unal . edu . co/~ ghernandezp/PSC/readings/02/mincut . pdf
如果你发现任何不正确的地方,或者你想分享更多关于上面讨论的话题的信息,请写评论。
版权属于:月萌API www.moonapi.com,转载请注明出处