使用二元提升技术的 N 元树中节点的第 k 个祖先
原文:https://www . geesforgeks . org/kth-n 进制树中节点的祖先-使用二进制提升技术/
给定一个 N 元树的顶点 V 和一个整数 K ,任务是打印树中给定顶点的 K th 祖先。如果不存在这样的祖先,那么打印 -1 。 举例:
输入: K = 2,V = 4
输出:1 T3】2ndT6】顶点 4 的父节点为 1 。 输入: K = 3,V = 4
输出: -1
方法:思路是使用二元提升技术。这种技术基于这样一个事实,即每个整数都可以用二进制形式表示。通过预处理,可以计算出一个稀疏表表【v】【I】,该表存储了顶点 v 的 2 和T9】父级,其中 0 ≤ i ≤ log 2 N 。该预处理需要 O(NlogN) 时间。 要找到顶点 V 的 K th 父项,让K = b0b1b2…bnT34】成为二进制表示中的一个 n 比特数,让p1T40】, p j 是位值为 1 的指数,那么 K 可以表示为K = 2pT601T63+2pT662T69】+2pT71 因此,要到达 V 的父级KthT86,我们必须跳至2PTHT921T95,2PTHT1002T103, 2 pth 这可以通过先前在 O(logN) 中计算的稀疏表来有效地完成。 以下是上述方法的实施:**
C++
// CPP implementation of the approach
#include <bits/stdc++.h>
using namespace std;
// Table for storing 2^ith parent
int **table;
// To store the height of the tree
int height;
// initializing the table and
// the height of the tree
void initialize(int n)
{
height = (int)ceil(log2(n));
table = new int *[n + 1];
}
// Filling with -1 as initial
void preprocessing(int n)
{
for (int i = 0; i < n + 1; i++)
{
table[i] = new int[height + 1];
memset(table[i], -1, sizeof table[i]);
}
}
// Calculating sparse table[][] dynamically
void calculateSparse(int u, int v)
{
// Using the recurrence relation to
// calculate the values of table[][]
table[v][0] = u;
for (int i = 1; i <= height; i++)
{
table[v][i] = table[table[v][i - 1]][i - 1];
// If we go out of bounds of the tree
if (table[v][i] == -1)
break;
}
}
// Function to return the Kth ancestor of V
int kthancestor(int V, int k)
{
// Doing bitwise operation to
// check the set bit
for (int i = 0; i <= height; i++)
{
if (k & (1 << i))
{
V = table[V][i];
if (V == -1)
break;
}
}
return V;
}
// Driver Code
int main()
{
// Number of vertices
int n = 6;
// initializing
initialize(n);
// Pre-processing
preprocessing(n);
// Calculating ancestors of v
calculateSparse(1, 2);
calculateSparse(1, 3);
calculateSparse(2, 4);
calculateSparse(2, 5);
calculateSparse(3, 6);
int K = 2, V = 5;
cout << kthancestor(V, K) << endl;
return 0;
}
// This code is contributed by
// sanjeev2552
Java 语言(一种计算机语言,尤用于创建网站)
// Java implementation of the approach
import java.util.Arrays;
class GfG {
// Table for storing 2^ith parent
private static int table[][];
// To store the height of the tree
private static int height;
// Private constructor for initializing
// the table and the height of the tree
private GfG(int n)
{
// log(n) with base 2
height = (int)Math.ceil(Math.log10(n) / Math.log10(2));
table = new int[n + 1][height + 1];
}
// Filling with -1 as initial
private static void preprocessing()
{
for (int i = 0; i < table.length; i++) {
Arrays.fill(table[i], -1);
}
}
// Calculating sparse table[][] dynamically
private static void calculateSparse(int u, int v)
{
// Using the recurrence relation to
// calculate the values of table[][]
table[v][0] = u;
for (int i = 1; i <= height; i++) {
table[v][i] = table[table[v][i - 1]][i - 1];
// If we go out of bounds of the tree
if (table[v][i] == -1)
break;
}
}
// Function to return the Kth ancestor of V
private static int kthancestor(int V, int k)
{
// Doing bitwise operation to
// check the set bit
for (int i = 0; i <= height; i++) {
if ((k & (1 << i)) != 0) {
V = table[V][i];
if (V == -1)
break;
}
}
return V;
}
// Driver code
public static void main(String args[])
{
// Number of vertices
int n = 6;
// Calling the constructor
GfG obj = new GfG(n);
// Pre-processing
preprocessing();
// Calculating ancestors of v
calculateSparse(1, 2);
calculateSparse(1, 3);
calculateSparse(2, 4);
calculateSparse(2, 5);
calculateSparse(3, 6);
int K = 2, V = 5;
System.out.print(kthancestor(V, K));
}
}
Python 3
# Python3 implementation of the approach
import math
class GfG :
# Private constructor for initializing
# the table and the height of the tree
def __init__(self, n):
# log(n) with base 2
# To store the height of the tree
self.height = int(math.ceil(math.log10(n) / math.log10(2)))
# Table for storing 2^ith parent
self.table = [0] * (n + 1)
# Filling with -1 as initial
def preprocessing(self):
i = 0
while ( i < len(self.table)) :
self.table[i] = [-1]*(self.height + 1)
i = i + 1
# Calculating sparse table[][] dynamically
def calculateSparse(self, u, v):
# Using the recurrence relation to
# calculate the values of table[][]
self.table[v][0] = u
i = 1
while ( i <= self.height) :
self.table[v][i] = self.table[self.table[v][i - 1]][i - 1]
# If we go out of bounds of the tree
if (self.table[v][i] == -1):
break
i = i + 1
# Function to return the Kth ancestor of V
def kthancestor(self, V, k):
i = 0
# Doing bitwise operation to
# check the set bit
while ( i <= self.height) :
if ((k & (1 << i)) != 0) :
V = self.table[V][i]
if (V == -1):
break
i = i + 1
return V
# Driver code
# Number of vertices
n = 6
# Calling the constructor
obj = GfG(n)
# Pre-processing
obj.preprocessing()
# Calculating ancestors of v
obj.calculateSparse(1, 2)
obj.calculateSparse(1, 3)
obj.calculateSparse(2, 4)
obj.calculateSparse(2, 5)
obj.calculateSparse(3, 6)
K = 2
V = 5
print(obj.kthancestor(V, K))
# This code is contributed by Arnab Kundu
C
// C# implementation of the approach
using System;
class GFG
{
class GfG
{
// Table for storing 2^ith parent
private static int [,]table ;
// To store the height of the tree
private static int height;
// Private constructor for initializing
// the table and the height of the tree
private GfG(int n)
{
// log(n) with base 2
height = (int)Math.Ceiling(Math.Log10(n) / Math.Log10(2));
table = new int[n + 1, height + 1];
}
// Filling with -1 as initial
private static void preprocessing()
{
for (int i = 0; i < table.GetLength(0); i++)
{
for (int j = 0; j < table.GetLength(1); j++)
{
table[i, j] = -1;
}
}
}
// Calculating sparse table[,] dynamically
private static void calculateSparse(int u, int v)
{
// Using the recurrence relation to
// calculate the values of table[,]
table[v, 0] = u;
for (int i = 1; i <= height; i++)
{
table[v, i] = table[table[v, i - 1], i - 1];
// If we go out of bounds of the tree
if (table[v, i] == -1)
break;
}
}
// Function to return the Kth ancestor of V
private static int kthancestor(int V, int k)
{
// Doing bitwise operation to
// check the set bit
for (int i = 0; i <= height; i++)
{
if ((k & (1 << i)) != 0)
{
V = table[V, i];
if (V == -1)
break;
}
}
return V;
}
// Driver code
public static void Main()
{
// Number of vertices
int n = 6;
// Calling the constructor
GfG obj = new GfG(n);
// Pre-processing
preprocessing();
// Calculating ancestors of v
calculateSparse(1, 2);
calculateSparse(1, 3);
calculateSparse(2, 4);
calculateSparse(2, 5);
calculateSparse(3, 6);
int K = 2, V = 5;
Console.Write(kthancestor(V, K));
}
}
}
// This code is contributed by AnkitRai01
java 描述语言
<script>
// Javascript implementation of the approach
// Table for storing 2^ith parent
let table;
// To store the height of the tree
let height;
// initializing the table and
// the height of the tree
function initialize(n)
{
height = Math.ceil(Math.log2(n));
}
// Filling with -1 as initial
function preprocessing()
{
table = new Array(n + 1);
for (let i = 0; i < n + 1; i++) {
table[i] = new Array(height + 1);
for (let j = 0; j < height + 1; j++) {
table[i][j] = -1;
}
}
}
// Calculating sparse table[][] dynamically
function calculateSparse(u, v)
{
// Using the recurrence relation to
// calculate the values of table[][]
table[v][0] = u;
for (let i = 1; i <= height; i++) {
table[v][i] = table[table[v][i - 1]][i - 1];
// If we go out of bounds of the tree
if (table[v][i] == -1)
break;
}
}
// Function to return the Kth ancestor of V
function kthancestor(V, k)
{
// Doing bitwise operation to
// check the set bit
for (let i = 0; i <= height; i++) {
if ((k & (1 << i)) != 0) {
V = table[V][i];
if (V == -1)
break;
}
}
return V;
}
// Number of vertices
let n = 6;
// Calling the constructor
initialize(n);
// Pre-processing
preprocessing();
// Calculating ancestors of v
calculateSparse(1, 2);
calculateSparse(1, 3);
calculateSparse(2, 4);
calculateSparse(2, 5);
calculateSparse(3, 6);
let K = 2, V = 5;
document.write(kthancestor(V, K));
// This code is contributed by divyeshrabadiya07.
</script>
Output:
1
时间复杂度: O(NlogN)用于预处理,logN 用于寻找祖先。
版权属于:月萌API www.moonapi.com,转载请注明出处