熊猫的布尔索引
原文:https://www.geeksforgeeks.org/boolean-indexing-in-pandas/
在布尔索引中,我们将根据数据框中数据的实际值选择数据子集,而不是根据它们的行/列标签或整数位置。在布尔索引中,我们使用布尔向量来过滤数据。
布尔索引是一种使用数据框中数据的实际值的索引类型。在布尔索引中,我们可以通过四种方式过滤数据–
- 使用布尔索引访问数据帧
- 对数据帧应用布尔掩码
- 基于列值屏蔽数据
- 基于索引值屏蔽数据
访问具有布尔索引的数据帧: 为了访问具有布尔索引的数据帧,我们必须创建一个数据帧,其中数据帧的索引包含布尔值“真”或“假”。例如
Python 3
# importing pandas as pd
import pandas as pd
# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
'degree': ["MBA", "BCA", "M.Tech", "MBA"],
'score':[90, 40, 80, 98]}
df = pd.DataFrame(dict, index = [True, False, True, False])
print(df)
输出:
现在,我们已经创建了一个带有布尔索引的数据帧,用户可以在布尔索引的帮助下访问数据帧。用户可以使用三种功能访问数据帧。loc[],。iloc[],。ix[]
使用访问带有布尔索引的数据帧。loc[]
为了使用布尔索引访问数据帧。loc[],我们只需在. loc[]函数中传递一个布尔值(True 或 False)。
Python 3
# importing pandas as pd
import pandas as pd
# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
'degree': ["MBA", "BCA", "M.Tech", "MBA"],
'score':[90, 40, 80, 98]}
# creating a dataframe with boolean index
df = pd.DataFrame(dict, index = [True, False, True, False])
# accessing a dataframe using .loc[] function
print(df.loc[True])
输出:
使用访问带有布尔索引的数据帧。iloc[]
以便使用。iloc[],我们必须传递一个布尔值(真或假),但是 iloc[]函数只接受整数作为参数,因此它会抛出一个错误,因此当我们在 iloc[]函数 中传递一个整数时,我们只能访问一个数据帧代码#1:
Python 3
# importing pandas as pd
import pandas as pd
# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
'degree': ["MBA", "BCA", "M.Tech", "MBA"],
'score':[90, 40, 80, 98]}
# creating a dataframe with boolean index
df = pd.DataFrame(dict, index = [True, False, True, False])
# accessing a dataframe using .iloc[] function
print(df.iloc[True])
输出:
TypeError
代码#2:
Python 3
# importing pandas as pd
import pandas as pd
# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
'degree': ["MBA", "BCA", "M.Tech", "MBA"],
'score':[90, 40, 80, 98]}
# creating a dataframe with boolean index
df = pd.DataFrame(dict, index = [True, False, True, False])
# accessing a dataframe using .iloc[] function
print(df.iloc[1])
输出:
使用访问带有布尔索引的数据帧。ix[]
以便使用。ix[],我们必须将布尔值(True 或 False)和整数值传递给。因为我们知道。ix[]函数是。loc[]和。iloc[]函数。 代码#1:
Python 3
# importing pandas as pd
import pandas as pd
# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
'degree': ["MBA", "BCA", "M.Tech", "MBA"],
'score':[90, 40, 80, 98]}
# creating a dataframe with boolean index
df = pd.DataFrame(dict, index = [True, False, True, False])
# accessing a dataframe using .ix[] function
print(df.ix[True])
输出:
代码#2:
计算机编程语言
# importing pandas as pd
import pandas as pd
# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
'degree': ["MBA", "BCA", "M.Tech", "MBA"],
'score':[90, 40, 80, 98]}
# creating a dataframe with boolean index
df = pd.DataFrame(dict, index = [True, False, True, False])
# accessing a dataframe using .ix[] function
print(df.ix[1])
输出:
对数据帧应用布尔掩码: 在数据帧中,我们可以应用布尔掩码,为此,我们可以使用 getitems 或[]访问器。我们可以通过给出与数据帧中包含的长度相同的“真”和“假”列表来应用布尔掩码。当我们应用布尔掩码时,它将只打印我们传递布尔值“真”的数据帧。要下载“NBA 1.1”CSV 文件点击这里。 代码#1:
Python 3
# importing pandas as pd
import pandas as pd
# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
'degree': ["MBA", "BCA", "M.Tech", "MBA"],
'score':[90, 40, 80, 98]}
df = pd.DataFrame(dict, index = [0, 1, 2, 3])
print(df[[True, False, True, False]])
输出:
代码#2:
Python 3
# importing pandas package
import pandas as pd
# making data frame from csv file
data = pd.read_csv("nba1.1.csv")
df = pd.DataFrame(data, index = [0, 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12])
df[[True, False, True, False, True,
False, True, False, True, False,
True, False, True]]
输出:
基于列值屏蔽数据: 在数据框中,我们可以基于列值过滤数据为了过滤数据,我们可以使用不同的运算符对数据框应用某些条件,如==,>,<,< =,> =。当我们将这些运算符应用于数据帧时,它会产生一系列“真”和“假”。要下载“NBA . CSV”CSV,请点击此处。 代码#1:
计算机编程语言
# importing pandas as pd
import pandas as pd
# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
'degree': ["BCA", "BCA", "M.Tech", "BCA"],
'score':[90, 40, 80, 98]}
# creating a dataframe
df = pd.DataFrame(dict)
# using a comparison operator for filtering of data
print(df['degree'] == 'BCA')
输出:
代码#2:
计算机编程语言
# importing pandas package
import pandas as pd
# making data frame from csv file
data = pd.read_csv("nba.csv", index_col ="Name")
# using greater than operator for filtering of data
print(data['Age'] > 25)
输出:
根据索引值屏蔽数据: 在数据框中,我们可以根据列值过滤数据为了过滤数据,我们可以使用不同的运算符,如==、>、<等,根据索引值创建一个屏蔽。要下载“NBA 1.1”CSV 文件点击这里。 代码#1:
Python 3
# importing pandas as pd
import pandas as pd
# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
'degree': ["BCA", "BCA", "M.Tech", "BCA"],
'score':[90, 40, 80, 98]}
df = pd.DataFrame(dict, index = [0, 1, 2, 3])
mask = df.index == 0
print(df[mask])
输出:
代码#2:
Python 3
# importing pandas package
import pandas as pd
# making data frame from csv file
data = pd.read_csv("nba1.1.csv")
# giving a index to a dataframe
df = pd.DataFrame(data, index = [0, 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12])
# filtering data on index value
mask = df.index > 7
df[mask]
输出:
版权属于:月萌API www.moonapi.com,转载请注明出处