熊猫的布尔索引

原文:https://www.geeksforgeeks.org/boolean-indexing-in-pandas/

在布尔索引中,我们将根据数据框中数据的实际值选择数据子集,而不是根据它们的行/列标签或整数位置。在布尔索引中,我们使用布尔向量来过滤数据。

布尔索引是一种使用数据框中数据的实际值的索引类型。在布尔索引中,我们可以通过四种方式过滤数据–

  • 使用布尔索引访问数据帧
  • 对数据帧应用布尔掩码
  • 基于列值屏蔽数据
  • 基于索引值屏蔽数据

访问具有布尔索引的数据帧: 为了访问具有布尔索引的数据帧,我们必须创建一个数据帧,其中数据帧的索引包含布尔值“真”或“假”。例如

Python 3

# importing pandas as pd
import pandas as pd

# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
        'degree': ["MBA", "BCA", "M.Tech", "MBA"],
        'score':[90, 40, 80, 98]}

df = pd.DataFrame(dict, index = [True, False, True, False])

print(df)

输出:

现在,我们已经创建了一个带有布尔索引的数据帧,用户可以在布尔索引的帮助下访问数据帧。用户可以使用三种功能访问数据帧。loc[],。iloc[],。ix[]

使用访问带有布尔索引的数据帧。loc[]

为了使用布尔索引访问数据帧。loc[],我们只需在. loc[]函数中传递一个布尔值(True 或 False)。

Python 3

# importing pandas as pd
import pandas as pd

# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
        'degree': ["MBA", "BCA", "M.Tech", "MBA"],
        'score':[90, 40, 80, 98]}

# creating a dataframe with boolean index
df = pd.DataFrame(dict, index = [True, False, True, False])

# accessing a dataframe using .loc[] function
print(df.loc[True])

输出:

使用访问带有布尔索引的数据帧。iloc[]

以便使用。iloc[],我们必须传递一个布尔值(真或假),但是 iloc[]函数只接受整数作为参数,因此它会抛出一个错误,因此当我们在 iloc[]函数 中传递一个整数时,我们只能访问一个数据帧代码#1:

Python 3

# importing pandas as pd
import pandas as pd

# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
        'degree': ["MBA", "BCA", "M.Tech", "MBA"],
        'score':[90, 40, 80, 98]}

# creating a dataframe with boolean index 
df = pd.DataFrame(dict, index = [True, False, True, False])

# accessing a dataframe using .iloc[] function
print(df.iloc[True])

输出:

TypeError

代码#2:

Python 3

# importing pandas as pd
import pandas as pd

# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
        'degree': ["MBA", "BCA", "M.Tech", "MBA"],
        'score':[90, 40, 80, 98]}

# creating a dataframe with boolean index 
df = pd.DataFrame(dict, index = [True, False, True, False])

# accessing a dataframe using .iloc[] function
print(df.iloc[1])

输出:

使用访问带有布尔索引的数据帧。ix[]

以便使用。ix[],我们必须将布尔值(True 或 False)和整数值传递给。因为我们知道。ix[]函数是。loc[]和。iloc[]函数。 代码#1:

Python 3

# importing pandas as pd
import pandas as pd

# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
        'degree': ["MBA", "BCA", "M.Tech", "MBA"],
        'score':[90, 40, 80, 98]}

# creating a dataframe with boolean index
df = pd.DataFrame(dict, index = [True, False, True, False])

# accessing a dataframe using .ix[] function
print(df.ix[True])

输出:

代码#2:

计算机编程语言

# importing pandas as pd
import pandas as pd

# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
        'degree': ["MBA", "BCA", "M.Tech", "MBA"],
        'score':[90, 40, 80, 98]}

# creating a dataframe with boolean index
df = pd.DataFrame(dict, index = [True, False, True, False])

# accessing a dataframe using .ix[] function
print(df.ix[1])

输出:

对数据帧应用布尔掩码: 在数据帧中,我们可以应用布尔掩码,为此,我们可以使用 getitems 或[]访问器。我们可以通过给出与数据帧中包含的长度相同的“真”和“假”列表来应用布尔掩码。当我们应用布尔掩码时,它将只打印我们传递布尔值“真”的数据帧。要下载“NBA 1.1”CSV 文件点击这里。 代码#1:

Python 3

# importing pandas as pd
import pandas as pd

# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
        'degree': ["MBA", "BCA", "M.Tech", "MBA"],
        'score':[90, 40, 80, 98]}

df = pd.DataFrame(dict, index = [0, 1, 2, 3])

print(df[[True, False, True, False]])

输出:

代码#2:

Python 3

# importing pandas package
import pandas as pd

# making data frame from csv file
data = pd.read_csv("nba1.1.csv")

df = pd.DataFrame(data, index = [0, 1, 2, 3, 4, 5, 6,
                                 7, 8, 9, 10, 11, 12])

df[[True, False, True, False, True,
    False, True, False, True, False,
                True, False, True]]

输出:

基于列值屏蔽数据: 在数据框中,我们可以基于列值过滤数据为了过滤数据,我们可以使用不同的运算符对数据框应用某些条件,如==,>,<,< =,> =。当我们将这些运算符应用于数据帧时,它会产生一系列“真”和“假”。要下载“NBA . CSV”CSV,请点击此处。 代码#1:

计算机编程语言

# importing pandas as pd
import pandas as pd

# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
        'degree': ["BCA", "BCA", "M.Tech", "BCA"],
        'score':[90, 40, 80, 98]}

# creating a dataframe
df = pd.DataFrame(dict)

# using a comparison operator for filtering of data
print(df['degree'] == 'BCA')

输出:

代码#2:

计算机编程语言

# importing pandas package
import pandas as pd

# making data frame from csv file
data = pd.read_csv("nba.csv", index_col ="Name")

# using greater than operator for filtering of data
print(data['Age'] > 25)

输出:

根据索引值屏蔽数据: 在数据框中,我们可以根据列值过滤数据为了过滤数据,我们可以使用不同的运算符,如==、>、<等,根据索引值创建一个屏蔽。要下载“NBA 1.1”CSV 文件点击这里。 代码#1:

Python 3

# importing pandas as pd
import pandas as pd

# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
        'degree': ["BCA", "BCA", "M.Tech", "BCA"],
        'score':[90, 40, 80, 98]}

df = pd.DataFrame(dict, index = [0, 1, 2, 3])

mask = df.index == 0

print(df[mask])

输出:

代码#2:

Python 3

# importing pandas package
import pandas as pd

# making data frame from csv file
data = pd.read_csv("nba1.1.csv")

# giving a index to a dataframe
df = pd.DataFrame(data, index = [0, 1, 2, 3, 4, 5, 6,
                                 7, 8, 9, 10, 11, 12])

# filtering data on index value
mask = df.index > 7

df[mask]

输出: