找到与 X 的绝对差为最小值的节点

原文:https://www . geesforgeks . org/find-the-node-with-x-的绝对差值给出最小值/

给定一棵树,所有节点的权重和一个整数 x ,任务是找到一个节点 i ,使得|权重【I】–x |最小。 举例:

输入:

x = 15 输出: 3 节点 1:| 5–15 | = 10 节点 2:| 10–15 | = 5 节点 3: |11 -15| = 4 节点 4:| 8–15 | = 7 节点 5: |6 -15| = 9

逼近:在树上执行 dfs 并跟踪其与的加权绝对差 x 给出最小值的节点。 以下是上述方法的实现:

C++

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;

int minimum = INT_MAX, x, ans;

vector<int> graph[100];
vector<int> weight(100);

// Function to perform dfs to find
// the minimum value
void dfs(int node, int parent)
{
    // If current value is less than
    // the current minimum
    if (minimum > abs(weight[node] - x)) {
        minimum = abs(weight[node] - x);
        ans = node;
    }
    for (int to : graph[node]) {
        if (to == parent)
            continue;
        dfs(to, node);
    }
}

// Driver code
int main()
{
    x = 15;

    // Weights of the node
    weight[1] = 5;
    weight[2] = 10;
    weight[3] = 11;
    weight[4] = 8;
    weight[5] = 6;

    // Edges of the tree
    graph[1].push_back(2);
    graph[2].push_back(3);
    graph[2].push_back(4);
    graph[1].push_back(5);

    dfs(1, 1);

    cout << ans;

    return 0;
}

Java 语言(一种计算机语言,尤用于创建网站)

// Java implementation of the approach
import java.util.*;
import java.lang.*;

class GFG
{

    static int minimum = Integer.MAX_VALUE, x, ans;

    @SuppressWarnings("unchecked")
    static Vector<Integer>[] graph = new Vector[100];
    static int[] weight = new int[100];

    // This block is executed even before main() function
    // This is necessary otherwise this program will
    // throw "NullPointerException"
    static
    {
        for (int i = 0; i < 100; i++)
            graph[i] = new Vector<>();
    }

    // Function to perform dfs to find
    // the minimum xored value
    static void dfs(int node, int parent)
    {

        // If current value is less than
        // the current minimum
        if (minimum > Math.abs(weight[node] - x))
        {
            minimum = Math.abs(weight[node] - x);
            ans = node;
        }
        for (int to : graph[node])
        {
            if (to == parent)
                continue;
            dfs(to, node);
        }
    }

    // Driver Code
    public static void main(String[] args)
    {
        x = 15;

        // Weights of the node
        weight[1] = 5;
        weight[2] = 10;
        weight[3] = 11;
        weight[4] = 8;
        weight[5] = 6;

        // Edges of the tree
        graph[1].add(2);
        graph[2].add(3);
        graph[2].add(4);
        graph[1].add(5);

        dfs(1, 1);

        System.out.println(ans);
    }
}

// This code is contributed by SHUBHAMSINGH10

Python 3

# Python3 implementation of the approach
from sys import maxsize

# Function to perform dfs to find
# the minimum value
def dfs(node, parent):
    global minimum, graph, weight, x, ans

    # If current value is less than
    # the current minimum
    if minimum > abs(weight[node] - x):
        minimum = abs(weight[node] - x)
        ans = node

    for to in graph[node]:
        if to == parent:
            continue
        dfs(to, node)

# Driver Code
if __name__ == "__main__":
    minimum = maxsize
    graph = [[] for i in range(100)]
    weight = [0] * 100
    x = 15
    ans = 0

    # Weights of the node
    weight[1] = 5
    weight[2] = 10
    weight[3] = 11
    weight[4] = 8
    weight[5] = 6

    # Edges of the tree
    graph[1].append(2)
    graph[2].append(3)
    graph[2].append(4)
    graph[1].append(5)

    dfs(1, 1)

    print(ans)

# This code is contributed by
# sanjeev2552

C

// C# implementation of the approach
using System;
using System.Collections.Generic;

class GFG
{

static int minimum = int.MaxValue, x, ans;

static List<List<int>> graph = new List<List<int>>();
static List<int> weight = new List<int>();

// Function to perform dfs to find
// the minimum value
static void dfs(int node, int parent)
{
    // If current value is more than
    // the current minimum
    if (minimum > Math.Abs(weight[node] - x))
    {
        minimum = Math.Abs(weight[node] - x);
        ans = node;
    }
    for (int i = 0; i < graph[node].Count; i++)
    {
        if (graph[node][i] == parent)
            continue;
        dfs(graph[node][i], node);
    }
}

// Driver code
public static void Main(String []args)
{
    x = 15;

    // Weights of the node
    weight.Add(0);
    weight.Add(5);
    weight.Add(10);;
    weight.Add(11);;
    weight.Add(8);
    weight.Add(6);

    for(int i = 0; i < 100; i++)
    graph.Add(new List<int>());

    // Edges of the tree
    graph[1].Add(2);
    graph[2].Add(3);
    graph[2].Add(4);
    graph[1].Add(5);

    dfs(1, 1);

    Console.WriteLine( ans);
}
}

// This code is contributed by shubhamsingh10

java 描述语言

<script>

// Javascript implementation of the approach

    let minimum = Number.MAX_VALUE, x, ans;

    let graph = new Array(100);

    let weight = new Array(100);
    for(let i=0;i<100;i++)
    {
        graph[i]=[];
        weight[i]=0;
    }

    // Function to perform dfs to find
    // the minimum xored value
    function dfs(node,parent)
    {
        // If current value is less than
        // the current minimum
        if (minimum > Math.abs(weight[node] - x))
        {
            minimum = Math.abs(weight[node] - x);
            ans = node;
        }
        for(let to=0;to<graph[node].length;to++)
        {
            if(graph[node][to] == parent)
                continue
            dfs(graph[node][to], node);  
        }

    }

    // Driver code

    x = 15;

    // Weights of the node
    weight[1] = 5;
    weight[2] = 10;
    weight[3] = 11;
    weight[4] = 8;
    weight[5] = 6;

    // Edges of the tree
    graph[1].push(2);
    graph[2].push(3);
    graph[2].push(4);
    graph[1].push(5);

    dfs(1, 1);

    document.write( ans);

    // This code is contributed by unknown2108

</script>

Output: 

3

复杂度分析:

  • 时间复杂度: O(N)。 在 dfs 中,树的每个节点都被处理一次,因此如果树中总共有 N 个节点,由于 dfs 而导致的复杂性是 O(N)。因此,时间复杂度为 O(N)。
  • 辅助空间: O(1)。 不需要任何额外的空间,所以空间复杂度不变。