使用线程进行矩阵乘法
矩阵的乘法确实需要时间。矩阵乘法的时间复杂度是 O(n^3)使用标准矩阵乘法。而 Strassen 算法对其进行了改进,其时间复杂度为 O(n^(2.8074)). 但是,有没有办法用正规的方法来提高矩阵乘法的性能。 可以做多线程来改善。在多线程中,我们不是利用处理器的单个内核,而是利用所有或更多的内核来解决问题。 我们创建不同的线程,每个线程评估矩阵乘法的某个部分。 根据处理器的内核数量,您可以创建所需的线程数量。虽然您可以根据需要创建任意多的线程,但更好的方法是为一个内核创建每个线程。 在第二种方法中,我们为结果矩阵中的每个元素创建一个单独的线程。使用 pthread_exit() 我们返回由 pthread_join() 收集的每个线程的计算值。这种方法不使用任何全局变量。
示例:
Input :
Matrix A
1 0 0
0 1 0
0 0 1
Matrix B
2 3 2
4 5 1
7 8 6
Output : Multiplication of A and B
2 3 2
4 5 1
7 8 6
注意*建议在基于 linux 的系统中执行程序 使用以下代码在 linux 中编译:
g++ -pthread program_name.cpp
卡片打印处理机(Card Print Processor 的缩写)
// CPP Program to multiply two matrix using pthreads
#include <bits/stdc++.h>
using namespace std;
// maximum size of matrix
#define MAX 4
// maximum number of threads
#define MAX_THREAD 4
int matA[MAX][MAX];
int matB[MAX][MAX];
int matC[MAX][MAX];
int step_i = 0;
void* multi(void* arg)
{
int i = step_i++; //i denotes row number of resultant matC
for (int j = 0; j < MAX; j++)
for (int k = 0; k < MAX; k++)
matC[i][j] += matA[i][k] * matB[k][j];
}
// Driver Code
int main()
{
// Generating random values in matA and matB
for (int i = 0; i < MAX; i++) {
for (int j = 0; j < MAX; j++) {
matA[i][j] = rand() % 10;
matB[i][j] = rand() % 10;
}
}
// Displaying matA
cout << endl
<< "Matrix A" << endl;
for (int i = 0; i < MAX; i++) {
for (int j = 0; j < MAX; j++)
cout << matA[i][j] << " ";
cout << endl;
}
// Displaying matB
cout << endl
<< "Matrix B" << endl;
for (int i = 0; i < MAX; i++) {
for (int j = 0; j < MAX; j++)
cout << matB[i][j] << " ";
cout << endl;
}
// declaring four threads
pthread_t threads[MAX_THREAD];
// Creating four threads, each evaluating its own part
for (int i = 0; i < MAX_THREAD; i++) {
int* p;
pthread_create(&threads[i], NULL, multi, (void*)(p));
}
// joining and waiting for all threads to complete
for (int i = 0; i < MAX_THREAD; i++)
pthread_join(threads[i], NULL);
// Displaying the result matrix
cout << endl
<< "Multiplication of A and B" << endl;
for (int i = 0; i < MAX; i++) {
for (int j = 0; j < MAX; j++)
cout << matC[i][j] << " ";
cout << endl;
}
return 0;
}
输出:
Matrix A
3 7 3 6
9 2 0 3
0 2 1 7
2 2 7 9
Matrix B
6 5 5 2
1 7 9 6
6 6 8 9
0 3 5 2
Multiplication of A and B
43 100 132 87
56 68 78 36
8 41 61 35
56 93 129 97
不使用全局变量的方法: 注*建议在基于 linux 的系统中执行程序 使用以下代码在 linux 中编译:
g++ -pthread program_name.cpp
C
// C Program to multiply two matrix using pthreads without
// use of global variables
#include<stdio.h>
#include<pthread.h>
#include<unistd.h>
#include<stdlib.h>
#define MAX 4
//Each thread computes single element in the resultant matrix
void *mult(void* arg)
{
int *data = (int *)arg;
int k = 0, i = 0;
int x = data[0];
for (i = 1; i <= x; i++)
k += data[i]*data[i+x];
int *p = (int*)malloc(sizeof(int));
*p = k;
//Used to terminate a thread and the return value is passed as a pointer
pthread_exit(p);
}
//Driver code
int main()
{
int matA[MAX][MAX];
int matB[MAX][MAX];
int r1=MAX,c1=MAX,r2=MAX,c2=MAX,i,j,k;
// Generating random values in matA
for (i = 0; i < r1; i++)
for (j = 0; j < c1; j++)
matA[i][j] = rand() % 10;
// Generating random values in matB
for (i = 0; i < r1; i++)
for (j = 0; j < c1; j++)
matB[i][j] = rand() % 10;
// Displaying matA
for (i = 0; i < r1; i++){
for(j = 0; j < c1; j++)
printf("%d ",matA[i][j]);
printf("\n");
}
// Displaying matB
for (i = 0; i < r2; i++){
for(j = 0; j < c2; j++)
printf("%d ",matB[i][j]);
printf("\n");
}
int max = r1*c2;
//declaring array of threads of size r1*c2
pthread_t *threads;
threads = (pthread_t*)malloc(max*sizeof(pthread_t));
int count = 0;
int* data = NULL;
for (i = 0; i < r1; i++)
for (j = 0; j < c2; j++)
{
//storing row and column elements in data
data = (int *)malloc((20)*sizeof(int));
data[0] = c1;
for (k = 0; k < c1; k++)
data[k+1] = matA[i][k];
for (k = 0; k < r2; k++)
data[k+c1+1] = matB[k][j];
//creating threads
pthread_create(&threads[count++], NULL,
mult, (void*)(data));
}
printf("RESULTANT MATRIX IS :- \n");
for (i = 0; i < max; i++)
{
void *k;
//Joining all threads and collecting return value
pthread_join(threads[i], &k);
int *p = (int *)k;
printf("%d ",*p);
if ((i + 1) % c2 == 0)
printf("\n");
}
return 0;
}
输出:
Matrix A
3 7 3 6
9 2 0 3
0 2 1 7
2 2 7 9
Matrix B
6 5 5 2
1 7 9 6
6 6 8 9
0 3 5 2
Multiplication of A and B
43 100 132 87
56 68 78 36
8 41 61 35
56 93 129 97
版权属于:月萌API www.moonapi.com,转载请注明出处