对几乎排序(或K
排序)的数组进行排序
给定n
个元素的数组,其中每个元素距离其目标位置最多k
个,设计一种算法,以O(n log k)
时间排序。 例如,让我们考虑k
为 2,在排序数组中索引 7 处的元素可以在给定数组中索引 5、6、7、8、9 处。
示例:
Input : arr[] = {6, 5, 3, 2, 8, 10, 9}
k = 3
Output : arr[] = {2, 3, 5, 6, 8, 9, 10}
Input : arr[] = {10, 9, 8, 7, 4, 70, 60, 50}
k = 4
Output : arr[] = {4, 7, 8, 9, 10, 50, 60, 70}
我们可以使用插入排序对元素进行有效排序。 以下是标准插入排序的 C 代码。
C
/* Function to sort an array using insertion sort*/
void insertionSort(int A[], int size)
{
int i, key, j;
for (i = 1; i < size; i++)
{
key = A[i];
j = i-1;
/* Move elements of A[0..i-1], that are greater than key, to one
position ahead of their current position.
This loop will run at most k times */
while (j >= 0 && A[j] > key)
{
A[j+1] = A[j];
j = j-1;
}
A[j+1] = key;
}
}
Java
/* Function to sort an array using insertion sort*/
static void insertionSort(int A[], int size)
{
int i, key, j;
for (i = 1; i < size; i++)
{
key = A[i];
j = i-1;
/* Move elements of A[0..i-1], that are greater than key, to one
position ahead of their current position.
This loop will run at most k times */
while (j >= 0 && A[j] > key)
{
A[j+1] = A[j];
j = j-1;
}
A[j+1] = key;
}
}
Python3
# Function to sort an array using
# insertion sort
def insertionSort(A, size):
i, key, j = 0, 0, 0
for i in range(size):
key = A[i]
j = i-1
# Move elements of A[0..i-1], that are
# greater than key, to one position
# ahead of their current position.
# This loop will run at most k times
while j >= 0 and A[j] > key:
A[j + 1] = A[j]
j = j - 1
A[j + 1] = key
C
/* C# Function to sort an array using insertion sort*/
static void insertionSort(int A[], int size)
{
int i, key, j;
for (i = 1; i < size; i++)
{
key = A[i];
j = i-1;
/* Move elements of A[0..i-1], that are greater than key, to one
position ahead of their current position.
This loop will run at most k times */
while (j >= 0 && A[j] > key)
{
A[j+1] = A[j];
j = j-1;
}
A[j+1] = key;
}
}
内循环最多运行k次。 要将每个元素移到正确的位置,最多需要移动k
个元素。 因此总体复杂度将为O(nk)
。
我们可以借助堆数据结构更有效地对此类数组进行排序。 以下是使用堆的详细过程。
- 使用前
k + 1
个元素创建大小为k + 1
的最小堆。 这将花费O(k)
时间(请参阅此 GFact)。 - 一步一步地从堆中删除
min
元素,将其放入结果数组,然后从其余元素中向堆中添加一个新元素。
删除元素并将新元素添加到最小堆将花费Logk
时间。 因此总体复杂度将为O(k + (n-k) * logK)
。
C++
// A STL based C++ program to sort a nearly sorted array.
#include <bits/stdc++.h>
using namespace std;
// Given an array of size n, where every element
// is k away from its target position, sorts the
// array in O(nLogk) time.
int sortK(int arr[], int n, int k)
{
// Insert first k+1 items in a priority queue (or min heap)
//(A O(k) operation). We assume, k < n.
priority_queue<int, vector<int>, greater<int> > pq(arr, arr + k + 1);
// i is index for remaining elements in arr[] and index
// is target index of for current minimum element in
// Min Heapm 'hp'.
int index = 0;
for (int i = k + 1; i < n; i++) {
arr[index++] = pq.top();
pq.pop();
pq.push(arr[i]);
}
while (pq.empty() == false) {
arr[index++] = pq.top();
pq.pop();
}
}
// A utility function to print array elements
void printArray(int arr[], int size)
{
for (int i = 0; i < size; i++)
cout << arr[i] << " ";
cout << endl;
}
// Driver program to test above functions
int main()
{
int k = 3;
int arr[] = { 2, 6, 3, 12, 56, 8 };
int n = sizeof(arr) / sizeof(arr[0]);
sortK(arr, n, k);
cout << "Following is sorted array" << endl;
printArray(arr, n);
return 0;
}
Java
// A java program to sort a nearly sorted array
import java.util.Iterator;
import java.util.PriorityQueue;
class GFG
{
private static void kSort(int[] arr, int n, int k)
{
// min heap
PriorityQueue<Integer> priorityQueue = new PriorityQueue<>();
// add first k + 1 items to the min heap
for(int i = 0; i < k + 1; i++)
{
priorityQueue.add(arr[i]);
}
int index = 0;
for(int i = k + 1; i < n; i++)
{
arr[index++] = priorityQueue.peek();
priorityQueue.poll();
priorityQueue.add(arr[i]);
}
Iterator<Integer> itr = priorityQueue.iterator();
while(itr.hasNext())
{
arr[index++] = priorityQueue.peek();
priorityQueue.poll();
}
}
// A utility function to print the array
private static void printArray(int[] arr, int n)
{
for(int i = 0; i < n; i++)
System.out.print(arr[i] + " ");
}
// Driver Code
public static void main(String[] args)
{
int k = 3;
int arr[] = { 2, 6, 3, 12, 56, 8 };
int n = arr.length;
kSort(arr, n, k);
System.out.println("Following is sorted array");
printArray(arr, n);
}
}
// This code is contributed by
// Manpreet Singh(manpreetsngh294)
Python3
# A Python3 program to sort a
# nearly sorted array.
from heapq import heappop, heappush, heapify
# A utility function to print
# array elements
def print_array(arr: list):
for elem in arr:
print(elem, end = ' ')
# Given an array of size n, where every
# element is k away from its target
# position, sorts the array in O(nLogk) time.
def sort_k(arr: list, n: int, k: int):
"""
:param arr: input array
:param n: length of the array
:param k: max distance, which every
element is away from its target position.
:return: None
"""
# List of first k+1 items
heap = arr[:k + 1]
# using heapify to convert list
# into heap(or min heap)
heapify(heap)
# "rem_elmnts_index" is index for remaining
# elements in arr and "target_index" is
# target index of for current minimum element
# in Min Heap "heap".
target_index = 0
for rem_elmnts_index in range(k + 1, n):
arr[target_index] = heappop(heap)
heappush(heap, arr[rem_elmnts_index])
target_index += 1
while heap:
arr[target_index] = heappop(heap)
target_index += 1
# Driver Code
k = 3
arr = [2, 6, 3, 12, 56, 8]
n = len(arr)
sort_k(arr, n, k)
print('Following is sorted array')
print_array(arr)
# This code is contributed by
# Veerat Beri(viratberi)
输出:
Following is sorted array
2 3 6 8 12 56
基于最小堆的方法需要O(nLogk)
时间,并使用O(k)
辅助空间。
我们还可以使用平衡二进制搜索树而不是堆来存储K + 1
个元素。 平衡 BST 上的插入和删除操作也需要O(Logk)
时间。 因此,基于平衡 BST 的方法也将花费O(nLogk)
时间,但是堆最小化方法似乎更有效,因为最小元素始终是根。 此外,堆不需要额外的空间来放置左右指针。
版权属于:月萌API www.moonapi.com,转载请注明出处