长度小于或等于 K 的非递减子阵列数量

原文:https://www . geesforgeks . org/长度小于或等于 k 的非递减子数组数量/

给定一个由 N 元素组成的数组 arr[] 和一个整数 K ,任务是找到长度小于或等于 K 的非递减子数组的数量。 举例:

输入: arr[] = {1,2,3},K = 2 输出: 5 {1}、{2}、{3}、{1,2}和{2,3}是有效的子阵。 输入: arr[] = {3,2,1},K = 1 输出: 3

朴素方法:简单的方法是生成所有长度小于等于 K 的子阵列,然后检查子阵列是否满足条件。因此,该方法的时间复杂度将是 O(N 3 )有效方法:更好的方法是使用双指针技术

  • 对于任何索引 i ,找到最大的索引 j ,使得子数组arr【I…j】不递减。这可以通过简单地增加 j 的值来实现,从 i + 1 开始,检查arr【j】是否大于arr【j–1】
  • 假设上一步找到的子阵列长度为 L 。计算 X = max(0,L–K)(L (L+1))/2 –( X (X+1))/2将被添加到最终答案中。这是因为对于长度为 L 的数组,长度为 ≥ K 的子数组个数。
    • 从第一个元素开始的子数组数量=L–K = X
    • 从第二个元素开始的子阵列数量=L–K–1 = X–1
    • 从第三个元素开始的子阵列数量=L–K–2 = X–2
    • 以此类推,直到 0,即 1 + 2 + 3 +..+ X = (X * (X + 1)) / 2 。如果从总的增加子阵列中减去该值,那么结果将是长度小于或等于 K 的增加子阵列的计数

以下是上述方法的实现:

C++

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;

// Function to return the required count
int findCnt(int* arr, int n, int k)
{
    // To store the final result
    int ret = 0;

    // Two pointer loop
    int i = 0;
    while (i < n) {

        // Initialising j
        int j = i + 1;

        // Looping till the subarray increases
        while (j < n and arr[j] >= arr[j - 1])
            j++;
        int x = max(0, j - i - k);

        // Update ret
        ret += ((j - i) * (j - i + 1)) / 2 - (x * (x + 1)) / 2;

        // Update i
        i = j;
    }

    // Return ret
    return ret;
}

// Driver code
int main()
{
    int arr[] = { 1, 2, 3 };
    int n = sizeof(arr) / sizeof(int);
    int k = 2;

    cout << findCnt(arr, n, k);

    return 0;
}

Java 语言(一种计算机语言,尤用于创建网站)

// Java implementation of the approach
class GFG
{

// Function to return the required count
static int findCnt(int[] arr, int n, int k)
{
    // To store the final result
    int ret = 0;

    // Two pointer loop
    int i = 0;
    while (i < n)
    {

        // Initialising j
        int j = i + 1;

        // Looping till the subarray increases
        while (j < n && arr[j] >= arr[j - 1])
            j++;
        int x = Math.max(0, j - i - k);

        // Update ret
        ret += ((j - i) * (j - i + 1)) / 2 -
                          (x * (x + 1)) / 2;

        // Update i
        i = j;
    }

    // Return ret
    return ret;
}

// Driver code
public static void main(String []args)
{
    int arr[] = { 1, 2, 3 };
    int n = arr.length;
    int k = 2;

    System.out.println(findCnt(arr, n, k));
}
}

// This code is contributed by 29AjayKumar

Python 3

# Python3 implementation of the approach

# Function to return the required count
def findCnt(arr, n, k) :

    # To store the final result
    ret = 0;

    # Two pointer loop
    i = 0;
    while (i < n) :

        # Initialising j
        j = i + 1;

        # Looping till the subarray increases
        while (j < n and arr[j] >= arr[j - 1]) :
            j += 1;

        x = max(0, j - i - k);

        # Update ret
        ret += ((j - i) * (j - i + 1)) // 2 - \
                          (x * (x + 1)) / 2;

        # Update i
        i = j;

    # Return ret
    return ret;

# Driver code
if __name__ == "__main__" :

    arr = [ 1, 2, 3 ];
    n = len(arr);
    k = 2;

    print(findCnt(arr, n, k));

# This code is contributed by AnkitRai01

C

// C# implementation of the approach
using System;

class GFG
{

// Function to return the required count
static int findCnt(int[] arr, int n, int k)
{
    // To store the final result
    int ret = 0;

    // Two pointer loop
    int i = 0;
    while (i < n)
    {

        // Initialising j
        int j = i + 1;

        // Looping till the subarray increases
        while (j < n && arr[j] >= arr[j - 1])
            j++;
        int x = Math.Max(0, j - i - k);

        // Update ret
        ret += ((j - i) * (j - i + 1)) / 2 -
                        (x * (x + 1)) / 2;

        // Update i
        i = j;
    }

    // Return ret
    return ret;
}

// Driver code
public static void Main(String []args)
{
    int []arr = { 1, 2, 3 };
    int n = arr.Length;
    int k = 2;

    Console.WriteLine(findCnt(arr, n, k));
}
}

// This code is contributed by Rajput-Ji

java 描述语言

<script>

// Javascript implementation of the approach

// Function to return the required count
function findCnt(arr, n, k)
{
    // To store the final result
    var ret = 0;

    // Two pointer loop
    var i = 0;
    while (i < n) {

        // Initialising j
        var j = i + 1;

        // Looping till the subarray increases
        while (j < n && arr[j] >= arr[j - 1])
            j++;
        var x = Math.max(0, j - i - k);

        // Update ret
        ret += ((j - i) * (j - i + 1)) / 2 - (x * (x + 1)) / 2;

        // Update i
        i = j;
    }

    // Return ret
    return ret;
}

// Driver code
var arr = [1, 2, 3 ];
var n = arr.length;
var k = 2;
document.write( findCnt(arr, n, k));

</script>

Output: 

5