数组中具有相同“与”、“或”和“异或”值的子集数量
给定一个由非负整数组成的大小为 N 的数组 arr[] ,任务是找到数组中非空子集的数量,使得子序列的位“与”、位“或”和位“异或”值彼此相等。
注意:既然答案可以大,那就用 1000000007 来 mod 吧。
示例:
输入: arr[] = [1,3,2,1,2,1] 输出: 7 解释: 按位异或、按位或、按位与的子序列之一为{1,1,1}。
输入: arr = [2,3,4,5] 输出: 4
朴素方法这个问题的朴素方法是以迭代的方式遍历数组的所有子集,对于每个子集找到按位 and、or 和 XOR 值,并检查它们是否相等。最后,返回这样相等子集的计数。
下面是上述方法的实现:
C++
// C++ implementation to find the number
// of subsets with equal bitwise AND,
// OR and XOR values
#include <bits/stdc++.h>
using namespace std;
const int mod = 1000000007;
// Function to find the number of
// subsets with equal bitwise AND,
// OR and XOR values
int countSubsets(int a[], int n)
{
int answer = 0;
// Traverse through all the subsets
for (int i = 0; i < (1 << n); i++) {
int bitwiseAND = -1;
int bitwiseOR = 0;
int bitwiseXOR = 0;
// Finding the subsets with the bits
// of 'i' which are set
for (int j = 0; j < n; j++) {
// Computing the bitwise AND
if (i & (1 << j)) {
if (bitwiseAND == -1)
bitwiseAND = a[j];
else
bitwiseAND &= a[j];
// Computing the bitwise OR
bitwiseOR |= a[j];
// Computing the bitwise XOR
bitwiseXOR ^= a[j];
}
}
// Comparing all the three values
if (bitwiseAND == bitwiseOR
&& bitwiseOR == bitwiseXOR)
answer = (answer + 1) % mod;
}
return answer;
}
// Driver code
int main()
{
int N = 6;
int A[N] = { 1, 3, 2, 1, 2, 1 };
cout << countSubsets(A, N);
return 0;
}
Java 语言(一种计算机语言,尤用于创建网站)
// Java implementation to find the number
// of subsets with equal bitwise AND,
// OR and XOR values
import java.io.*;
class GFG {
static int mod = 1000000007;
// Function to find the number of
// subsets with equal bitwise AND,
// OR and XOR values
static int countSubsets(int a[], int n)
{
int answer = 0;
// Traverse through all the subsets
for (int i = 0; i < (1 << n); i++) {
int bitwiseAND = -1;
int bitwiseOR = 0;
int bitwiseXOR = 0;
// Finding the subsets with the bits
// of 'i' which are set
for (int j = 0; j < n; j++) {
// Computing the bitwise AND
if ((i & (1 << j)) == 0) {
if (bitwiseAND == -1)
bitwiseAND = a[j];
else
bitwiseAND &= a[j];
// Computing the bitwise OR
bitwiseOR |= a[j];
// Computing the bitwise XOR
bitwiseXOR ^= a[j];
}
}
// Comparing all the three values
if (bitwiseAND == bitwiseOR
&& bitwiseOR == bitwiseXOR)
answer = (answer + 1) % mod;
}
return answer;
}
// Driver Code
public static void main (String[] args)
{
int N = 6;
int A[] = { 1, 3, 2, 1, 2, 1 };
System.out.print(countSubsets(A, N));
}
}
// This code is contributed by shivanisinghss2110
Python 3
# Python3 implementation to find the number
# of subsets with equal bitwise AND,
# OR and XOR values
mod = 1000000007;
# Function to find the number of
# subsets with equal bitwise AND,
# OR and XOR values
def countSubsets(a, n) :
answer = 0;
# Traverse through all the subsets
for i in range(1 << n) :
bitwiseAND = -1;
bitwiseOR = 0;
bitwiseXOR = 0;
# Finding the subsets with the bits
# of 'i' which are set
for j in range(n) :
# Computing the bitwise AND
if (i & (1 << j)) :
if (bitwiseAND == -1) :
bitwiseAND = a[j];
else :
bitwiseAND &= a[j];
# Computing the bitwise OR
bitwiseOR |= a[j];
# Computing the bitwise XOR
bitwiseXOR ^= a[j];
# Comparing all the three values
if (bitwiseAND == bitwiseOR and bitwiseOR == bitwiseXOR) :
answer = (answer + 1) % mod;
return answer;
# Driver code
if __name__ == "__main__" :
N = 6;
A = [ 1, 3, 2, 1, 2, 1 ];
print(countSubsets(A, N));
# This code is contributed by AnkitRai01
C
// C# implementation to find the number
// of subsets with equal bitwise AND,
// OR and XOR values
using System;
class GFG {
static int mod = 1000000007;
// Function to find the number of
// subsets with equal bitwise AND,
// OR and XOR values
static int countSubsets(int []a, int n)
{
int answer = 0;
// Traverse through all the subsets
for (int i = 0; i < (1 << n); i++) {
int bitwiseAND = -1;
int bitwiseOR = 0;
int bitwiseXOR = 0;
// Finding the subsets with the bits
// of 'i' which are set
for (int j = 0; j < n; j++) {
// Computing the bitwise AND
if ((i & (1 << j)) == 0) {
if (bitwiseAND == -1)
bitwiseAND = a[j];
else
bitwiseAND &= a[j];
// Computing the bitwise OR
bitwiseOR |= a[j];
// Computing the bitwise XOR
bitwiseXOR ^= a[j];
}
}
// Comparing all the three values
if (bitwiseAND == bitwiseOR
&& bitwiseOR == bitwiseXOR)
answer = (answer + 1) % mod;
}
return answer;
}
// Driver Code
public static void Main(String[] args)
{
int N = 6;
int []A = { 1, 3, 2, 1, 2, 1 };
Console.Write(countSubsets(A, N));
}
}
// This code is contributed by 29AjayKumar
java 描述语言
<script>
// Javascript implementation to find the number
// of subsets with equal bitwise AND,
// OR and XOR values
let mod = 1000000007;
// Function to find the number of
// subsets with equal bitwise AND,
// OR and XOR values
function countSubsets(a, n)
{
let answer = 0;
// Traverse through all the subsets
for (let i = 0; i < (1 << n); i++) {
let bitwiseAND = -1;
let bitwiseOR = 0;
let bitwiseXOR = 0;
// Finding the subsets with the bits
// of 'i' which are set
for (let j = 0; j < n; j++) {
// Computing the bitwise AND
if ((i & (1 << j)) != 0) {
if (bitwiseAND == -1)
bitwiseAND = a[j];
else
bitwiseAND &= a[j];
// Computing the bitwise OR
bitwiseOR |= a[j];
// Computing the bitwise XOR
bitwiseXOR ^= a[j];
}
}
// Comparing all the three values
if (bitwiseAND == bitwiseOR
&& bitwiseOR == bitwiseXOR)
answer = (answer + 1) % mod;
}
return answer;
}
let N = 6;
let A = [ 1, 3, 2, 1, 2, 1 ];
document.write(countSubsets(A, N));
</script>
Output:
7
时间复杂度: O(N * 2 N ) 其中 N 是数组的大小。
辅助空间: O(1)
高效方法:高效方法的背后是按位运算的特性。
- 利用按位 and 和按位 OR 的性质,我们可以说,如果 a & b == a | b,那么 a 等于 b。因此,如果子集的 AND 和 OR 值相等,那么子集的所有元素都是相同的(比如 x)。所以 AND 和 OR 值等于 x。
- 因为子序列的所有值彼此相等,所以异或值出现两种情况:
- 子集大小为奇数:异或值等于 x。
- 子集大小为偶数:异或值等于 0。
- 因此,从上面的观察,我们可以得出结论,所有奇数大小的子序列/子集具有相等的元素遵循该属性。
- 除此之外,如果子集的所有元素都是 0,那么子集将遵循属性(与子集大小无关)。所以所有只有 0 作为元素的子集都会被添加到答案中。
- 如果某个元素的频率为 K,那么它可以形成的奇数大小子集的数量为2K–1,它可以形成的非空子集的总数为2K–1。
下面是上述方法的实现:
C++
// C++ program to find the number
// of subsets with equal bitwise
// AND, OR and XOR values
#include <bits/stdc++.h>
using namespace std;
const int mod = 1000000007;
// Function to find the number of
// subsets with equal bitwise AND,
// OR and XOR values
int countSubsets(int a[], int n)
{
int answer = 0;
// Precompute the modded powers
// of two for subset counting
int powerOfTwo[100005];
powerOfTwo[0] = 1;
// Loop to iterate and find the modded
// powers of two for subset counting
for (int i = 1; i < 100005; i++)
powerOfTwo[i]
= (powerOfTwo[i - 1] * 2)
% mod;
// Map to store the frequency of
// each element
unordered_map<int, int> frequency;
// Loop to compute the frequency
for (int i = 0; i < n; i++)
frequency[a[i]]++;
// For every element > 0, the number of
// subsets formed using this element only
// is equal to 2 ^ (frequency[element]-1).
// And for 0, we have to find all
// the subsets, so 2^(frequency[element]) -1
for (auto el : frequency) {
// If element is greater than 0
if (el.first != 0)
answer
= (answer % mod
+ powerOfTwo[el.second - 1])
% mod;
else
answer
= (answer % mod
+ powerOfTwo[el.second]
- 1 + mod)
% mod;
}
return answer;
}
// Driver code
int main()
{
int N = 6;
int A[N] = { 1, 3, 2, 1, 2, 1 };
cout << countSubsets(A, N);
return 0;
}
Java 语言(一种计算机语言,尤用于创建网站)
// Java program to find the number
// of subsets with equal bitwise
// AND, OR and XOR values
import java.util.*;
class GFG{
static int mod = 1000000007;
// Function to find the number of
// subsets with equal bitwise AND,
// OR and XOR values
static int countSubsets(int a[], int n)
{
int answer = 0;
// Precompute the modded powers
// of two for subset counting
int []powerOfTwo = new int[100005];
powerOfTwo[0] = 1;
// Loop to iterate and find the modded
// powers of two for subset counting
for (int i = 1; i < 100005; i++)
powerOfTwo[i]
= (powerOfTwo[i - 1] * 2)
% mod;
// Map to store the frequency of
// each element
HashMap<Integer,Integer> frequency = new HashMap<Integer,Integer>();
// Loop to compute the frequency
for (int i = 0; i < n; i++)
if(frequency.containsKey(a[i])){
frequency.put(a[i], frequency.get(a[i])+1);
}else{
frequency.put(a[i], 1);
}
// For every element > 0, the number of
// subsets formed using this element only
// is equal to 2 ^ (frequency[element]-1).
// And for 0, we have to find all
// the subsets, so 2^(frequency[element]) -1
for (Map.Entry<Integer,Integer> el : frequency.entrySet()) {
// If element is greater than 0
if (el.getKey() != 0)
answer
= (answer % mod
+ powerOfTwo[el.getValue() - 1])
% mod;
else
answer
= (answer % mod
+ powerOfTwo[el.getValue()]
- 1 + mod)
% mod;
}
return answer;
}
// Driver code
public static void main(String[] args)
{
int N = 6;
int A[] = { 1, 3, 2, 1, 2, 1 };
System.out.print(countSubsets(A, N));
}
}
// This code is contributed by 29AjayKumar
Python 3
# Python3 program to find the number
# of subsets with equal bitwise
# AND, OR and XOR values
mod = 1000000007
# Function to find the number of
# subsets with equal bitwise AND,
# OR and XOR values
def countSubsets(a, n):
answer = 0
# Precompute the modded powers
# of two for subset counting
powerOfTwo = [0 for x in range(100005)]
powerOfTwo[0] = 1
# Loop to iterate and find the modded
# powers of two for subset counting
for i in range(1, 100005):
powerOfTwo[i] = (powerOfTwo[i - 1] * 2) % mod
# Map to store the frequency of
# each element
frequency = {}
# Loop to compute the frequency
for i in range(0, n):
if a[i] in frequency:
frequency[a[i]] += 1
else:
frequency[a[i]] = 1
# For every element > 0, the number of
# subsets formed using this element only
# is equal to 2 ^ (frequency[element]-1).
# And for 0, we have to find all
# the subsets, so 2^(frequency[element]) -1
for key, value in frequency.items():
# If element is greater than 0
if (key != 0):
answer = (answer % mod +
powerOfTwo[value - 1]) % mod
else:
answer = (answer % mod +
powerOfTwo[value] - 1 + mod)% mod
return answer
# Driver code
N = 6
A = [ 1, 3, 2, 1, 2, 1 ]
print(countSubsets(A, N))
# This code is contributed by amreshkumar3
C
// C# program to find the number
// of subsets with equal bitwise
// AND, OR and XOR values
using System;
using System.Collections.Generic;
class GFG{
static int mod = 1000000007;
// Function to find the number of
// subsets with equal bitwise AND,
// OR and XOR values
static int countSubsets(int []a, int n)
{
int answer = 0;
// Precompute the modded powers
// of two for subset counting
int []powerOfTwo = new int[100005];
powerOfTwo[0] = 1;
// Loop to iterate and find the modded
// powers of two for subset counting
for(int i = 1; i < 100005; i++)
powerOfTwo[i] = (powerOfTwo[i - 1] * 2) % mod;
// Map to store the frequency
// of each element
Dictionary<int, int> frequency = new Dictionary<int, int>();
// Loop to compute the frequency
for(int i = 0; i < n; i++)
if(frequency.ContainsKey(a[i]))
{
frequency[a[i]] = frequency[a[i]] + 1;
}
else
{
frequency.Add(a[i], 1);
}
// For every element > 0, the number of
// subsets formed using this element only
// is equal to 2 ^ (frequency[element]-1).
// And for 0, we have to find all
// the subsets, so 2^(frequency[element]) -1
foreach (KeyValuePair<int, int> el in frequency)
{
// If element is greater than 0
if (el.Key != 0)
answer = (answer % mod +
powerOfTwo[el.Value - 1]) % mod;
else
answer = (answer % mod +
powerOfTwo[el.Value] - 1 +
mod) % mod;
}
return answer;
}
// Driver code
public static void Main(String[] args)
{
int N = 6;
int []A = { 1, 3, 2, 1, 2, 1 };
Console.Write(countSubsets(A, N));
}
}
// This code is contributed by Rajput-Ji
java 描述语言
<script>
// Javascript program to find the number
// of subsets with equal bitwise
// AND, OR and XOR values
var mod = 1000000007;
// Function to find the number of
// subsets with equal bitwise AND,
// OR and XOR values
function countSubsets(a, n)
{
var answer = 0;
// Precompute the modded powers
// of two for subset counting
var powerOfTwo = Array(100005).fill(0);
powerOfTwo[0] = 1;
// Loop to iterate and find the modded
// powers of two for subset counting
for(var i = 1; i < 100005; i++)
powerOfTwo[i] = (powerOfTwo[i - 1] * 2) % mod;
// Map to store the frequency
// of each element
var frequency = new Map();
// Loop to compute the frequency
for(var i = 0; i < n; i++)
if (frequency.has(a[i]))
{
frequency.set(a[i], frequency.get(a[i]) + 1);
}
else
{
frequency.set(a[i], 1);
}
// For every element > 0, the number of
// subsets formed using this element only
// is equal to 2 ^ (frequency[element]-1).
// And for 0, we have to find all
// the subsets, so 2^(frequency[element]) -1
frequency.forEach((value, key) => {
// If element is greater than 0
if (key != 0)
answer = (answer % mod +
powerOfTwo[value - 1]) % mod;
else
answer = (answer % mod +
powerOfTwo[value] - 1 +
mod) % mod;
});
return answer;
}
// Driver code
var N = 6;
var A = [ 1, 3, 2, 1, 2, 1 ];
document.write(countSubsets(A, N));
// This code is contributed by rrrtnx
</script>
Output:
7
时间复杂度: O(N) ,其中 N 是数组的大小。
辅助空间: O(N + 10 5
版权属于:月萌API www.moonapi.com,转载请注明出处