到达非零“与”值矩阵末端的途径数
给定一个由非负整数组成的 N * N 矩阵 arr[][] ,任务是找到从 arr[0][0] 开始通过每次移动向下或向右到达arr[N–1][N–1]的方法数。每当到达单元格 arr[i][j] 时,“与”值更新为current val&arr[I][j]。
示例:
输入: arr[][] = { {1,1,1}, {1,1,1}, {1,1,1}} 输出: 6 所有路径将给出非零和值。 因此,路的数量等于 6。 输入: arr[][] = { {1,1,2}, {1,2,1}, {2,1,1}} 输出: 0
方法:这个问题可以用动态规划解决。首先,我们需要决定民主党的状态。对于每个单元格 arr[i][j] 和一个数字 X ,我们将存储从 arr[i][j] 到达arr[N–1][N–1]的路径数,其中 X 是到目前为止路径的“与”值。因此,我们的解决方案将使用三维动态编程,两个用于单元格的坐标,一个用于 X 。 要求的递推关系是:
DP[I][j][x]= DP[I][j+1][x & arr[I][j]]+DP[I+1][j][x & arr[I][j]]
下面是上述方法的实现:
C++
// C++ implementation of the approach
#include <bits/stdc++.h>
#define n 3
#define maxV 20
using namespace std;
// 3d array to store
// states of dp
int dp[n][n][maxV];
// Array to determine whether
// a state has been solved before
int v[n][n][maxV];
// Function to return the count of required paths
int countWays(int i, int j, int x, int arr[][n])
{
// Base cases
if (i == n || j == n)
return 0;
x = (x & arr[i][j]);
if (x == 0)
return 0;
if (i == n - 1 && j == n - 1)
return 1;
// If a state has been solved before
// it won't be evaluated again
if (v[i][j][x])
return dp[i][j][x];
v[i][j][x] = 1;
// Recurrence relation
dp[i][j][x] = countWays(i + 1, j, x, arr)
+ countWays(i, j + 1, x, arr);
return dp[i][j][x];
}
// Driver code
int main()
{
int arr[n][n] = { { 1, 2, 1 },
{ 1, 1, 0 },
{ 2, 1, 1 } };
cout << countWays(0, 0, arr[0][0], arr);
return 0;
}
Java 语言(一种计算机语言,尤用于创建网站)
// Java implementation of the approach
class GFG {
static int n = 3;
static int maxV = 20;
// 3d array to store
// states of dp
static int[][][] dp = new int[n][n][maxV];
// Array to determine whether
// a state has been solved before
static int[][][] v = new int[n][n][maxV];
// Function to return the count of required paths
static int countWays(int i, int j,
int x, int arr[][])
{
// Base cases
if (i == n || j == n) {
return 0;
}
x = (x & arr[i][j]);
if (x == 0) {
return 0;
}
if (i == n - 1 && j == n - 1) {
return 1;
}
// If a state has been solved before
// it won't be evaluated again
if (v[i][j][x] == 1) {
return dp[i][j][x];
}
v[i][j][x] = 1;
// Recurrence relation
dp[i][j][x] = countWays(i + 1, j, x, arr)
+ countWays(i, j + 1, x, arr);
return dp[i][j][x];
}
// Driver code
public static void main(String[] args)
{
int arr[][] = { { 1, 2, 1 },
{ 1, 1, 0 },
{ 2, 1, 1 } };
System.out.println(countWays(0, 0, arr[0][0], arr));
}
}
// This code contributed by Rajput-Ji
Python 3
# Python3 implementation of the approach
n = 3
maxV = 20
# 3d array to store states of dp
dp = [[[0 for i in range(maxV)]
for i in range(n)]
for i in range(n)]
# Array to determine whether
# a state has been solved before
v = [[[0 for i in range(maxV)]
for i in range(n)]
for i in range(n)]
# Function to return
# the count of required paths
def countWays(i, j, x, arr):
# Base cases
if (i == n or j == n):
return 0
x = (x & arr[i][j])
if (x == 0):
return 0
if (i == n - 1 and j == n - 1):
return 1
# If a state has been solved before
# it won't be evaluated again
if (v[i][j][x]):
return dp[i][j][x]
v[i][j][x] = 1
# Recurrence relation
dp[i][j][x] = countWays(i + 1, j, x, arr) + \
countWays(i, j + 1, x, arr);
return dp[i][j][x]
# Driver code
arr = [[1, 2, 1 ],
[1, 1, 0 ],
[2, 1, 1 ]]
print(countWays(0, 0, arr[0][0], arr))
# This code is contributed by Mohit Kumar
C
// C# implementation of the approach
using System;
class GFG
{
static int n = 3;
static int maxV = 20;
// 3d array to store
// states of dp
static int[,,] dp = new int[n, n, maxV];
// Array to determine whether
// a state has been solved before
static int[,,] v = new int[n, n, maxV];
// Function to return the count of required paths
static int countWays(int i, int j,
int x, int [,]arr)
{
// Base cases
if (i == n || j == n)
{
return 0;
}
x = (x & arr[i, j]);
if (x == 0)
{
return 0;
}
if (i == n - 1 && j == n - 1)
{
return 1;
}
// If a state has been solved before
// it won't be evaluated again
if (v[i, j, x] == 1)
{
return dp[i, j, x];
}
v[i, j, x] = 1;
// Recurrence relation
dp[i, j, x] = countWays(i + 1, j, x, arr)
+ countWays(i, j + 1, x, arr);
return dp[i, j, x];
}
// Driver code
public static void Main()
{
int [,]arr = { { 1, 2, 1 },
{ 1, 1, 0 },
{ 2, 1, 1 } };
Console.WriteLine(countWays(0, 0, arr[0,0], arr));
}
}
// This code is contributed by AnkitRai01
java 描述语言
<script>
// Javascript implementation of the approach
var n = 3;
var maxV = 20;
// 3d array to store
// states of dp
var dp = new Array(n);
for(var i = 0; i<n; i++)
{
dp[i] = new Array(n);
for(var j =0; j<n;j++)
{
dp[i][j] = new Array(maxV);
}
}
var v = new Array(n);
// Array to determine whether
// a state has been solved before
for(var i = 0; i<n; i++)
{
v[i] = new Array(n);
for(var j =0; j<n;j++)
{
v[i][j] = new Array(maxV);
}
}
// Function to return the count of required paths
function countWays(i, j, x, arr)
{
// Base cases
if (i == n || j == n)
return 0;
x = (x & arr[i][j]);
if (x == 0)
return 0;
if (i == n - 1 && j == n - 1)
return 1;
// If a state has been solved before
// it won't be evaluated again
if (v[i][j][x])
return dp[i][j][x];
v[i][j][x] = 1;
// Recurrence relation
dp[i][j][x] = countWays(i + 1, j, x, arr)
+ countWays(i, j + 1, x, arr);
return dp[i][j][x];
}
// Driver code
var arr = [ [ 1, 2, 1 ],
[ 1, 1, 0 ],
[ 2, 1, 1 ] ];
document.write( countWays(0, 0, arr[0][0], arr));
</script>
Output:
1
时间复杂度:O(n 2 )
辅助空间:O(n 4 * maxV)
版权属于:月萌API www.moonapi.com,转载请注明出处