GCD = 1 的子阵数|段树
给定一个数组 arr[] ,任务是找出 GCD 等于 1 的子数组的个数。 例:
输入: arr[] = {1,1,1} 输出: 6 给定阵列的每个单个子阵列的 GCD 为 1,总共有 6 个子阵列。 输入: arr[] = {2,2,2} 输出: 0
方法:这个问题可以在 O(NlogN) 中使用段树数据结构来解决。将要构建的段可以用来回答范围-gcd 查询。 现在来了解一下算法。使用双指针技术解决这个问题。在讨论算法之前,让我们先做一些观察。
- 假设 G 是子阵arr【l…r】的 GCD, G1 是子阵arr【l+1…r】的 GCD。 G 始终小于或等于 G1 。
- 假设给定的 L1 、 R1 是第一个使范围【L,R】的 GCD 为 1 的指标,那么对于任何大于或等于 L1 、 R2 的 L2 也将大于或等于 R1 。
经过以上观察,双指针技术完全有道理,即如果最小的 R 的长度 对于索引 L 是已知的,那么对于索引 L + 1 ,搜索需要从 R 开始。 以下是上述方法的实施:
C++
// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
#define maxLen 30
// Array to store segment-tree
int seg[3 * maxLen];
// Function to build segment-tree to
// answer range GCD queries
int build(int l, int r, int in, int* arr)
{
// Base-case
if (l == r)
return seg[in] = arr[l];
// Mid element of the range
int mid = (l + r) / 2;
// Merging the result of left and right sub-tree
return seg[in] = __gcd(build(l, mid, 2 * in + 1, arr),
build(mid + 1, r, 2 * in + 2, arr));
}
// Function to perform range GCD queries
int query(int l, int r, int l1, int r1, int in)
{
// Base-cases
if (l1 <= l and r <= r1)
return seg[in];
if (l > r1 or r < l1)
return 0;
// Mid-element
int mid = (l + r) / 2;
// Calling left and right child
return __gcd(query(l, mid, l1, r1, 2 * in + 1),
query(mid + 1, r, l1, r1, 2 * in + 2));
}
// Function to find the required count
int findCnt(int* arr, int n)
{
// Building the segment tree
build(0, n - 1, 0, arr);
// Two pointer variables
int i = 0, j = 0;
// To store the final answer
int ans = 0;
// Looping
while (i < n) {
// Incrementing j till we don't get
// a gcd value of 1
while (j < n and query(0, n - 1, i, j, 0) != 1)
j++;
// Updating the final answer
ans += (n - j);
// Increment i
i++;
// Update j
j = max(j, i);
}
// Returning the final answer
return ans;
}
// Driver code
int main()
{
int arr[] = { 1, 1, 1, 1 };
int n = sizeof(arr) / sizeof(int);
cout << findCnt(arr, n);
return 0;
}
Java 语言(一种计算机语言,尤用于创建网站)
// Java implementation of the above approach
class GFG
{
static int maxLen = 30;
// Array to store segment-tree
static int []seg = new int[3 * maxLen];
// Function to build segment-tree to
// answer range GCD queries
static int build(int l, int r,
int in, int[] arr)
{
// Base-case
if (l == r)
return seg[in] = arr[l];
// Mid element of the range
int mid = (l + r) / 2;
// Merging the result of left and right sub-tree
return seg[in] = __gcd(build(l, mid, 2 * in + 1, arr),
build(mid + 1, r, 2 * in + 2, arr));
}
// Function to perform range GCD queries
static int query(int l, int r, int l1,
int r1, int in)
{
// Base-cases
if (l1 <= l && r <= r1)
return seg[in];
if (l > r1 || r < l1)
return 0;
// Mid-element
int mid = (l + r) / 2;
// Calling left and right child
return __gcd(query(l, mid, l1, r1, 2 * in + 1),
query(mid + 1, r, l1, r1, 2 * in + 2));
}
// Function to find the required count
static int findCnt(int[] arr, int n)
{
// Building the segment tree
build(0, n - 1, 0, arr);
// Two pointer variables
int i = 0, j = 0;
// To store the final answer
int ans = 0;
// Looping
while (i < n)
{
// Incrementing j till we don't get
// a gcd value of 1
while (j < n && query(0, n - 1,
i, j, 0) != 1)
j++;
// Updating the final answer
ans += (n - j);
// Increment i
i++;
// Update j
j = Math.max(j, i);
}
// Returning the final answer
return ans;
}
static int __gcd(int a, int b)
{
return b == 0 ? a : __gcd(b, a % b);
}
// Driver code
public static void main(String []args)
{
int arr[] = { 1, 1, 1, 1 };
int n = arr.length;
System.out.println(findCnt(arr, n));
}
}
// This code is contributed by PrinciRaj1992
Python 3
# Python3 implementation of the above approach
from math import gcd
maxLen = 30;
# Array to store segment-tree
seg = [0] * (3 * maxLen);
# Function to build segment-tree to
# answer range GCD queries
def build(l, r, i, arr) :
# Base-case
if (l == r) :
seg[i] = arr[l];
return seg[i];
# Mid element of the range
mid = (l + r) // 2;
# Merging the result of left and right sub-tree
seg[i] = gcd(build(l, mid, 2 * i + 1, arr),
build(mid + 1, r, 2 * i + 2, arr));
return seg[i];
# Function to perform range GCD queries
def query(l, r, l1, r1, i) :
# Base-cases
if (l1 <= l and r <= r1) :
return seg[i];
if (l > r1 or r < l1) :
return 0;
# Mid-element
mid = (l + r) // 2;
# Calling left and right child
return gcd(query(l, mid, l1, r1, 2 * i + 1),
query(mid + 1, r, l1, r1, 2 * i + 2));
# Function to find the required count
def findCnt(arr, n) :
# Building the segment tree
build(0, n - 1, 0, arr);
# Two pointer variables
i = 0; j = 0;
# To store the final answer
ans = 0;
# Looping
while (i < n) :
# Incrementing j till we don't get
# a gcd value of 1
while (j < n and
query(0, n - 1, i, j, 0) != 1) :
j += 1;
# Updating the final answer
ans += (n - j);
# Increment i
i += 1;
# Update j
j = max(j, i);
# Returning the final answer
return ans;
# Driver code
if __name__ == "__main__" :
arr = [ 1, 1, 1, 1 ];
n = len(arr);
print(findCnt(arr, n));
# This code is contributed by AnkitRai01
C
// C# implementation of the above approach
using System;
class GFG
{
static int maxLen = 30;
// Array to store segment-tree
static int []seg = new int[3 * maxLen];
// Function to build segment-tree to
// answer range GCD queries
static int build(int l, int r,
int iN, int[] arr)
{
// Base-case
if (l == r)
return seg[iN] = arr[l];
// Mid element of the range
int mid = (l + r) / 2;
// Merging the result of left and right sub-tree
return seg[iN] = __gcd(build(l, mid, 2 * iN + 1, arr),
build(mid + 1, r, 2 * iN + 2, arr));
}
// Function to perform range GCD queries
static int query(int l, int r, int l1,
int r1, int iN)
{
// Base-cases
if (l1 <= l && r <= r1)
return seg[iN];
if (l > r1 || r < l1)
return 0;
// Mid-element
int mid = (l + r) / 2;
// Calling left and right child
return __gcd(query(l, mid, l1, r1, 2 * iN + 1),
query(mid + 1, r, l1, r1, 2 * iN + 2));
}
// Function to find the required count
static int findCnt(int[] arr, int n)
{
// Building the segment tree
build(0, n - 1, 0, arr);
// Two pointer variables
int i = 0, j = 0;
// To store the final answer
int ans = 0;
// Looping
while (i < n)
{
// Incrementing j till we don't get
// a gcd value of 1
while (j < n && query(0, n - 1,
i, j, 0) != 1)
j++;
// Updating the final answer
ans += (n - j);
// Increment i
i++;
// Update j
j = Math.Max(j, i);
}
// Returning the final answer
return ans;
}
static int __gcd(int a, int b)
{
return b == 0 ? a : __gcd(b, a % b);
}
// Driver code
public static void Main(String []args)
{
int []arr = { 1, 1, 1, 1 };
int n = arr.Length;
Console.WriteLine(findCnt(arr, n));
}
}
// This code is contributed by PrinciRaj1992
java 描述语言
<script>
// Javascript implementation of the above approach
let maxLen = 30;
// Array to store segment-tree
let seg = new Array(3 * maxLen);
// Function to build segment-tree to
// answer range GCD queries
function build(l, r, inn, arr) {
// Base-case
if (l == r)
return seg[inn] = arr[l];
// Mid element of the range
let mid = Math.floor((l + r) / 2);
// Merging the result of left and right sub-tree
return seg[inn] = __gcd(build(l, mid, 2 * inn + 1, arr),
build(mid + 1, r, 2 * inn + 2, arr));
}
// Function to perform range GCD queries
function query(l, r, l1, r1, inn) {
// Base-cases
if (l1 <= l && r <= r1)
return seg[inn];
if (l > r1 || r < l1)
return 0;
// Mid-element
let mid = Math.floor((l + r) / 2);
// Calling left and right child
return __gcd(query(l, mid, l1, r1, 2 * inn + 1),
query(mid + 1, r, l1, r1, 2 * inn + 2));
}
// Function to find the required count
function findCnt(arr, n) {
// Building the segment tree
build(0, n - 1, 0, arr);
// Two pointer variables
let i = 0, j = 0;
// To store the final answer
let ans = 0;
// Looping
while (i < n) {
// Incrementing j till we don't get
// a gcd value of 1
while (j < n && query(0, n - 1,
i, j, 0) != 1)
j++;
// Updating the final answer
ans += (n - j);
// Increment i
i++;
// Update j
j = Math.max(j, i);
}
// Returning the final answer
return ans;
}
function __gcd(a, b) {
return b == 0 ? a : __gcd(b, a % b);
}
// Driver code
let arr = [1, 1, 1, 1];
let n = arr.length;
document.write(findCnt(arr, n));
// This code is contributed by gfgking
</script>
Output:
10
版权属于:月萌API www.moonapi.com,转载请注明出处