与 BST | Set 2 中给定的和配对
原文:https://www . geesforgeks . org/pair-with-a-given-sum-in-BST-set-2/
给定一个二叉查找树和一个整数 X ,任务是检查 BST 中是否存在一对和等于 X 的不同节点。如果是,则打印是否则打印否。
示例:
Input: X = 5
5
/ \
3 7
/ \ / \
2 4 6 8
Output: Yes
2 + 3 = 5\. Thus, the answer is "Yes"
Input: X = 10
1
\
2
\
3
\
4
\
5
Output: No
方法:我们已经在这篇文章中讨论了基于哈希的方法。这个的空间复杂度是 O(N),其中 N 是 BST 中的节点数。
在本文中,我们将使用一种空间高效的方法来解决同样的问题,方法是将空间复杂度降低到 O(H),其中 H 是 BST 的高度。为此,我们将在 BST 上使用两个指针技术。因此,我们将维护一个前向和一个后向迭代器,它们将分别以有序遍历和反向有序遍历的顺序迭代 BST。以下是解决问题的步骤:
- 为 BST 创建一个向前和向后的迭代器。假设它们所指向的节点的值是 v1 和 v2。
- 现在在每一步,
- 如果 v1 + v2 = X,我们找到了一对。
- 如果 v1 + v2 < x,我们将使前向迭代器指向下一个元素。
- 如果 v1 + v2 > x,我们将使向后迭代器指向前一个元素。
- 如果我们没有找到这样的一对,答案将是“没有”。
下面是上述方法的实现:
C++
// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
// Node of the binary tree
struct node {
int data;
node* left;
node* right;
node(int data)
{
this->data = data;
left = NULL;
right = NULL;
}
};
// Function to find a pair with given sum
bool existsPair(node* root, int x)
{
// Iterators for BST
stack<node *> it1, it2;
// Initializing forward iterator
node* c = root;
while (c != NULL)
it1.push(c), c = c->left;
// Initializing backward iterator
c = root;
while (c != NULL)
it2.push(c), c = c->right;
// Two pointer technique
while (it1.top() != it2.top()) {
// Variables to store values at
// it1 and it2
int v1 = it1.top()->data, v2 = it2.top()->data;
// Base case
if (v1 + v2 == x)
return true;
// Moving forward pointer
if (v1 + v2 < x) {
c = it1.top()->right;
it1.pop();
while (c != NULL)
it1.push(c), c = c->left;
}
// Moving backward pointer
else {
c = it2.top()->left;
it2.pop();
while (c != NULL)
it2.push(c), c = c->right;
}
}
// Case when no pair is found
return false;
}
// Driver code
int main()
{
node* root = new node(5);
root->left = new node(3);
root->right = new node(7);
root->left->left = new node(2);
root->left->right = new node(4);
root->right->left = new node(6);
root->right->right = new node(8);
int x = 5;
// Calling required function
if (existsPair(root, x))
cout << "Yes";
else
cout << "No";
return 0;
}
Java 语言(一种计算机语言,尤用于创建网站)
// Java implementation of the approach
import java.util.*;
class GFG
{
// Node of the binary tree
static class node
{
int data;
node left;
node right;
node(int data)
{
this.data = data;
left = null;
right = null;
}
};
// Function to find a pair with given sum
static boolean existsPair(node root, int x)
{
// Iterators for BST
Stack<node > it1 = new Stack<node>(), it2 = new Stack<node>();
// Initializing forward iterator
node c = root;
while (c != null)
{
it1.push(c);
c = c.left;
}
// Initializing backward iterator
c = root;
while (c != null)
{
it2.push(c);
c = c.right;
}
// Two pointer technique
while (it1.peek() != it2.peek())
{
// Variables to store values at
// it1 and it2
int v1 = it1.peek().data, v2 = it2.peek().data;
// Base case
if (v1 + v2 == x)
return true;
// Moving forward pointer
if (v1 + v2 < x)
{
c = it1.peek().right;
it1.pop();
while (c != null)
{
it1.push(c);
c = c.left;
}
}
// Moving backward pointer
else
{
c = it2.peek().left;
it2.pop();
while (c != null)
{
it2.push(c);
c = c.right;
}
}
}
// Case when no pair is found
return false;
}
// Driver code
public static void main(String[] args)
{
node root = new node(5);
root.left = new node(3);
root.right = new node(7);
root.left.left = new node(2);
root.left.right = new node(4);
root.right.left = new node(6);
root.right.right = new node(8);
int x = 5;
// Calling required function
if (existsPair(root, x))
System.out.print("Yes");
else
System.out.print("No");
}
}
// This code is contributed by 29AjayKumar
Python 3
# Python3 implementation of the approach
# Node of the binary tree
class node:
def __init__ (self, key):
self.data = key
self.left = None
self.right = None
# Function that returns true if a pair
# with given sum exists in the given BSTs
def existsPair(root1, x):
# Stack to store nodes for forward
# and backward iterator
it1, it2 = [], []
# Initializing forward iterator
c = root1
while (c != None):
it1.append(c)
c = c.left
# Initializing backward iterator
c = root1
while (c != None):
it2.append(c)
c = c.right
# Two pointer technique
while (it1[-1] != it2[-1]):
# To store the value of the nodes
# current iterators are pointing to
v1 = it1[-1].data
v2 = it2[-1].data
# Base case
if (v1 + v2 == x):
return True
# Moving forward iterator
if (v1 + v2 < x):
c = it1[-1].right
del it1[-1]
while (c != None):
it1.append(c)
c = c.left
# Moving backward iterator
else:
c = it2[-1].left
del it2[-1]
while (c != None):
it2.append(c)
c = c.right
# If no such pair found
return False
# Driver code
if __name__ == '__main__':
root2 = node(5)
root2.left = node(3)
root2.right = node(7)
root2.left.left = node(2)
root2.left.right = node(4)
root2.right.left = node(6)
root2.right.right = node(8)
x = 5
# Calling required function
if (existsPair(root2, x)):
print("Yes")
else:
print("No")
# This code is contributed by mohit kumar 29
C
// C# implementation of the approach
using System;
using System.Collections.Generic;
class GFG
{
// Node of the binary tree
public class node
{
public int data;
public node left;
public node right;
public node(int data)
{
this.data = data;
left = null;
right = null;
}
};
// Function to find a pair with given sum
static bool existsPair(node root, int x)
{
// Iterators for BST
Stack<node > it1 = new Stack<node>(),
it2 = new Stack<node>();
// Initializing forward iterator
node c = root;
while (c != null)
{
it1.Push(c);
c = c.left;
}
// Initializing backward iterator
c = root;
while (c != null)
{
it2.Push(c);
c = c.right;
}
// Two pointer technique
while (it1.Peek() != it2.Peek())
{
// Variables to store values at
// it1 and it2
int v1 = it1.Peek().data,
v2 = it2.Peek().data;
// Base case
if (v1 + v2 == x)
return true;
// Moving forward pointer
if (v1 + v2 < x)
{
c = it1.Peek().right;
it1.Pop();
while (c != null)
{
it1.Push(c);
c = c.left;
}
}
// Moving backward pointer
else
{
c = it2.Peek().left;
it2.Pop();
while (c != null)
{
it2.Push(c);
c = c.right;
}
}
}
// Case when no pair is found
return false;
}
// Driver code
public static void Main(String[] args)
{
node root = new node(5);
root.left = new node(3);
root.right = new node(7);
root.left.left = new node(2);
root.left.right = new node(4);
root.right.left = new node(6);
root.right.right = new node(8);
int x = 5;
// Calling required function
if (existsPair(root, x))
Console.Write("Yes");
else
Console.Write("No");
}
}
// This code is contributed by Rajput-Ji
java 描述语言
<script>
// Javascript implementation of the approach
// Node of the binary tree
class node
{
constructor(data)
{
this.data = data;
this.left = this.right = null;
}
}
// Function to find a pair with given sum
function existsPair(root, x)
{
// Iterators for BST
let it1 = [], it2 = [];
// Initializing forward iterator
let c = root;
while (c != null)
{
it1.push(c);
c = c.left;
}
// Initializing backward iterator
c = root;
while (c != null)
{
it2.push(c);
c = c.right;
}
// Two pointer technique
while (it1[it1.length-1] != it2[it2.length-1])
{
// Variables to store values at
// it1 and it2
let v1 = it1[it1.length - 1].data,
v2 = it2[it2.length - 1].data;
// Base case
if (v1 + v2 == x)
return true;
// Moving forward pointer
if (v1 + v2 < x)
{
c = it1[it1.length - 1].right;
it1.pop();
while (c != null)
{
it1.push(c);
c = c.left;
}
}
// Moving backward pointer
else
{
c = it2[it2.length - 1].left;
it2.pop();
while (c != null)
{
it2.push(c);
c = c.right;
}
}
}
// Case when no pair is found
return false;
}
// Driver code
let root = new node(5);
root.left = new node(3);
root.right = new node(7);
root.left.left = new node(2);
root.left.right = new node(4);
root.right.left = new node(6);
root.right.right = new node(8);
let x = 5;
// Calling required function
if (existsPair(root, x))
document.write("Yes");
else
document.write("No");
// This code is contributed by unknown2108
</script>
Output:
Yes
时间复杂度 : O(N)。 辅助空间 : O(N)。
版权属于:月萌API www.moonapi.com,转载请注明出处