子阵列数按位“或”> = K
给定一个数组 arr[] 和一个整数 K ,任务是计算具有位 OR ≥ K 的子数组的数量。
示例:
输入: arr[] = { 1,2,3 } K = 3 输出: 4 子阵列的按位 OR: { 1 } = 1 { 1,2 } = 3 { 1,2,3 } = 3 { 2 } = 2 { 2,3 } = 3 { 3 } = 3 4 个子阵列的按位 OR ≥ K
输入: arr[] = { 3,4,5 } K = 6 T3】输出: 2
天真的做法:运行三个嵌套循环。最外面的循环决定了子数组的开始。中间的循环决定了子数组的结束。最里面的循环遍历子数组,子数组的边界由最外面和中间的循环确定。对于每个子阵列,计算或并更新计数=计数+ 1 ,如果或大于 K 。
下面是上述方法的实现:
C++
// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
// Function to return the count of required sub-arrays
int countSubArrays(const int* arr, int n, int K)
{
int count = 0;
for (int i = 0; i < n; i++) {
for (int j = i; j < n; j++) {
int bitwise_or = 0;
// Traverse sub-array [i..j]
for (int k = i; k <= j; k++) {
bitwise_or = bitwise_or | arr[k];
}
if (bitwise_or >= K)
count++;
}
}
return count;
}
// Driver code
int main()
{
int arr[] = { 3, 4, 5 };
int n = sizeof(arr) / sizeof(arr[0]);
int k = 6;
cout << countSubArrays(arr, n, k);
return 0;
}
Java 语言(一种计算机语言,尤用于创建网站)
// Java implementation of the approach
import java.util.*;
class solution
{
// Function to return the count of required sub-arrays
static int countSubArrays(int arr[], int n, int K)
{
int count = 0;
for (int i = 0; i < n; i++) {
for (int j = i; j < n; j++) {
int bitwise_or = 0;
// Traverse sub-array [i..j]
for (int k = i; k <= j; k++) {
bitwise_or = bitwise_or | arr[k];
}
if (bitwise_or >= K)
count++;
}
}
return count;
}
// Driver code
public static void main(String args[])
{
int arr[] = { 3, 4, 5 };
int n = arr.length;
int k = 6;
System.out.println(countSubArrays(arr, n, k));
}
}
// This code is contributed by
// Surendra_Gangwar
Python 3
# Python3 implementation of the approach
# Function to return the count of
# required sub-arrays
def countSubArrays(arr, n, K) :
count = 0;
for i in range(n) :
for j in range(i, n) :
bitwise_or = 0
# Traverse sub-array [i..j]
for k in range(i, j + 1) :
bitwise_or = bitwise_or | arr[k]
if (bitwise_or >= K) :
count += 1
return count
# Driver code
if __name__ == "__main__" :
arr = [ 3, 4, 5 ]
n = len(arr)
k = 6
print(countSubArrays(arr, n, k))
# This code is contributed by Ryuga
C
// C# implementation of the approach
using System;
class GFG
{
// Function to return the count of
// required sub-arrays
static int countSubArrays(int []arr,
int n, int K)
{
int count = 0;
for (int i = 0; i < n; i++)
{
for (int j = i; j < n; j++)
{
int bitwise_or = 0;
// Traverse sub-array [i..j]
for (int k = i; k <= j; k++)
{
bitwise_or = bitwise_or | arr[k];
}
if (bitwise_or >= K)
count++;
}
}
return count;
}
// Driver code
public static void Main()
{
int []arr = { 3, 4, 5 };
int n = arr.Length;
int k = 6;
Console.WriteLine(countSubArrays(arr, n, k));
}
}
// This code is contributed by
// Mohit kumar
服务器端编程语言(Professional Hypertext Preprocessor 的缩写)
<?php
// PHP implementation of the approach
// Function to return the count of
// required sub-arrays
function countSubArrays($arr, $n, $K)
{
$count = 0;
for ($i = 0; $i < $n; $i++)
{
for ($j = 0; $j < $n; $j++)
{
$bitwise_or = 0;
// Traverse sub-array [i..j]
for ($k = $i; $k < $j + 1; $k++)
$bitwise_or = $bitwise_or | $arr[$k];
if ($bitwise_or >= $K)
$count += 1;
}
}
return $count;
}
// Driver code
$arr = array( 3, 4, 5 );
$n = count($arr);
$k = 6;
print(countSubArrays($arr, $n, $k));
// This code is contributed by mits
?>
java 描述语言
<script>
// Javascript implementation of the approach
// Function to return the count of required sub-arrays
function countSubArrays(arr, n, K)
{
let count = 0;
for (let i = 0; i < n; i++) {
for (let j = i; j < n; j++) {
let bitwise_or = 0;
// Traverse sub-array [i..j]
for (let k = i; k <= j; k++) {
bitwise_or = bitwise_or | arr[k];
}
if (bitwise_or >= K)
count++;
}
}
return count;
}
// Driver code
let arr = [ 3, 4, 5 ];
let n = arr.length;
let k = 6;
document.write(countSubArrays(arr, n, k));
// This code is contributed by suresh07.
</script>
Output:
2
以上解的时间复杂度为O(n3)辅助空间为 O(1)。 一种高效解决方案使用段树来计算子阵列在 O(log n) 时间内的按位或。因此,现在我们直接查询段树,而不是遍历子数组。
下面是上述方法的实现:
C++
// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
#define N 100002
int tree[4 * N];
// Function to build the segment tree
void build(int* arr, int node, int start, int end)
{
if (start == end) {
tree[node] = arr[start];
return;
}
int mid = (start + end) >> 1;
build(arr, 2 * node, start, mid);
build(arr, 2 * node + 1, mid + 1, end);
tree[node] = tree[2 * node] | tree[2 * node + 1];
}
// Function to return the bitwise OR of segment [L..R]
int query(int node, int start, int end, int l, int r)
{
if (start > end || start > r || end < l) {
return 0;
}
if (start >= l && end <= r) {
return tree[node];
}
int mid = (start + end) >> 1;
int q1 = query(2 * node, start, mid, l, r);
int q2 = query(2 * node + 1, mid + 1, end, l, r);
return q1 | q2;
}
// Function to return the count of required sub-arrays
int countSubArrays(int arr[], int n, int K)
{
// Build segment tree
build(arr, 1, 0, n - 1);
int count = 0;
for (int i = 0; i < n; i++) {
for (int j = i; j < n; j++) {
// Query segment tree for bitwise OR
// of sub-array [i..j]
int bitwise_or = query(1, 0, n - 1, i, j);
if (bitwise_or >= K)
count++;
}
}
return count;
}
// Driver code
int main()
{
int arr[] = { 3, 4, 5 };
int n = sizeof(arr) / sizeof(arr[0]);
int k = 6;
cout << countSubArrays(arr, n, k);
return 0;
}
Java 语言(一种计算机语言,尤用于创建网站)
// Java implementation of the approach
public class Main
{
static int N = 100002;
static int tree[] = new int[4 * N];
// Function to build the segment tree
static void build(int arr[], int node,
int start, int end)
{
if (start == end) {
tree[node] = arr[start];
return;
}
int mid = (start + end) >> 1;
build(arr, 2 * node, start, mid);
build(arr, 2 * node + 1, mid + 1, end);
tree[node] = tree[2 * node] | tree[2 * node + 1];
}
// Function to return the bitwise OR of segment [L..R]
static int query(int node, int start,
int end, int l, int r)
{
if (start > end || start > r || end < l)
{
return 0;
}
if (start >= l && end <= r)
{
return tree[node];
}
int mid = (start + end) >> 1;
int q1 = query(2 * node, start, mid, l, r);
int q2 = query(2 * node + 1, mid + 1, end, l, r);
return q1 | q2;
}
// Function to return the count of required sub-arrays
static int countSubArrays(int arr[], int n, int K)
{
// Build segment tree
build(arr, 1, 0, n - 1);
int count = 0;
for (int i = 0; i < n; i++)
{
for (int j = i; j < n; j++)
{
// Query segment tree for bitwise OR
// of sub-array [i..j]
int bitwise_or = query(1, 0, n - 1, i, j);
if (bitwise_or >= K)
count++;
}
}
return count;
}
// Driver code
public static void main(String[] args)
{
int arr[] = { 3, 4, 5 };
int n = arr.length;
int k = 6;
System.out.print(countSubArrays(arr, n, k));
}
}
// This code is contributed by divyesh072019
Python 3
# Python implementation of the approach
N = 100002
tree = [0]*(4 * N)
# Function to build the segment tree
def build(arr, node, start, end):
if start == end:
tree[node] = arr[start]
return
mid = (start + end) >> 1
build(arr, 2 * node, start, mid)
build(arr, 2 * node + 1, mid + 1, end)
tree[node] = tree[2 * node] | tree[2 * node + 1]
# Function to return the bitwise OR of segment[L..R]
def query(node, start, end, l, r):
if start > end or start > r or end < l:
return 0
if start >= l and end <= r:
return tree[node]
mid = (start + end) >> 1
q1 = query(2 * node, start, mid, l, r)
q2 = query(2 * node + 1, mid + 1, end, l, r)
return q1 or q2
# Function to return the count of required sub-arrays
def countSubArrays(arr, n, K):
# Build segment tree
build(arr, 1, 0, n - 1)
count = 0
for i in range(n):
for j in range(n):
# Query segment tree for bitwise OR
# of sub-array[i..j]
bitwise_or = query(1, 0, n - 1, i, j)
if bitwise_or >= K:
count += 1
return count
# Driver code
arr = [3, 4, 5]
n = len(arr)
k = 6
print(countSubArrays(arr, n, k))
# This code is contributed by ankush_953
C
// C# implementation of the approach
using System;
class GFG {
static int N = 100002;
static int[] tree = new int[4 * N];
// Function to build the segment tree
static void build(int[] arr, int node,
int start, int end)
{
if (start == end) {
tree[node] = arr[start];
return;
}
int mid = (start + end) >> 1;
build(arr, 2 * node, start, mid);
build(arr, 2 * node + 1, mid + 1, end);
tree[node] = tree[2 * node] | tree[2 * node + 1];
}
// Function to return the bitwise OR of segment [L..R]
static int query(int node, int start,
int end, int l, int r)
{
if (start > end || start > r || end < l)
{
return 0;
}
if (start >= l && end <= r)
{
return tree[node];
}
int mid = (start + end) >> 1;
int q1 = query(2 * node, start, mid, l, r);
int q2 = query(2 * node + 1, mid + 1, end, l, r);
return q1 | q2;
}
// Function to return the count of required sub-arrays
static int countSubArrays(int[] arr, int n, int K)
{
// Build segment tree
build(arr, 1, 0, n - 1);
int count = 0;
for (int i = 0; i < n; i++)
{
for (int j = i; j < n; j++)
{
// Query segment tree for bitwise OR
// of sub-array [i..j]
int bitwise_or = query(1, 0, n - 1, i, j);
if (bitwise_or >= K)
count++;
}
}
return count;
}
// Driver code
static void Main() {
int[] arr = { 3, 4, 5 };
int n = arr.Length;
int k = 6;
Console.WriteLine(countSubArrays(arr, n, k));
}
}
// This code is contributed by divyeshrabadiya07.
java 描述语言
<script>
// Javascript implementation of the approach
let N = 100002;
let tree = new Array(4 * N);
// Function to build the segment tree
function build(arr, node, start, end)
{
if (start == end)
{
tree[node] = arr[start];
return;
}
let mid = (start + end) >> 1;
build(arr, 2 * node, start, mid);
build(arr, 2 * node + 1, mid + 1, end);
tree[node] = tree[2 * node] | tree[2 * node + 1];
}
// Function to return the bitwise OR of segment [L..R]
function query(node, start, end, l, r)
{
if (start > end || start > r || end < l)
{
return 0;
}
if (start >= l && end <= r)
{
return tree[node];
}
let mid = (start + end) >> 1;
let q1 = query(2 * node, start, mid, l, r);
let q2 = query(2 * node + 1, mid + 1, end, l, r);
return q1 | q2;
}
// Function to return the count of
// required sub-arrays
function countSubArrays(arr, n, K)
{
// Build segment tree
build(arr, 1, 0, n - 1);
let count = 0;
for(let i = 0; i < n; i++)
{
for(let j = i; j < n; j++)
{
// Query segment tree for bitwise OR
// of sub-array [i..j]
let bitwise_or = query(1, 0, n - 1, i, j);
if (bitwise_or >= K)
count++;
}
}
return count;
}
// Driver code
let arr = [ 3, 4, 5 ];
let n = arr.length;
let k = 6;
document.write(countSubArrays(arr, n, k));
// This code is contributed by rag2127
</script>
Output:
2
上述解的时间复杂度为 O(n 2 log n) ,辅助空间为O(n)。
一个更有效的解决方案是使用 T2 二分搜索法 T3。按位“或”是一个永远不会随着输入数量减少的函数。例如:
OR(a,b) ≤ OR(a,b,c) OR(a 1 ,a 2 ,a 3 ,…) ≤ OR(a 1 ,a 2 ,a 3 ,…,b)
借此性质, OR(a i ,…,a j ) < = OR(a i ,…,a j ,a j+1 ) 。因此,如果 OR(a i ,…,a j ) 大于 K,那么 OR(a i ,…,a j ,a j+1 ) 也将大于 K。因此,一旦我们找到子阵列【I..j] 其 OR 大于 K,我们不需要检查子阵列【I..j+1],[i..j+2],..以此类推,因为它们的 OR 也会大于 k,我们可以把剩余子阵的计数加到当前的和上。从一个特定的起点开始,第一个子阵列的“或”大于“K”,这是用二分搜索法法找到的。
下面是上述想法的实现:
C++
// C++ program to implement the above approach
#include <bits/stdc++.h>
#define N 100002
using namespace std;
int tree[4 * N];
// Function which builds the segment tree
void build(int* arr, int node, int start, int end)
{
if (start == end) {
tree[node] = arr[start];
return;
}
int mid = (start + end) >> 1;
build(arr, 2 * node, start, mid);
build(arr, 2 * node + 1, mid + 1, end);
tree[node] = tree[2 * node] | tree[2 * node + 1];
}
// Function that returns bitwise OR of segment [L..R]
int query(int node, int start, int end, int l, int r)
{
if (start > end || start > r || end < l) {
return 0;
}
if (start >= l && end <= r) {
return tree[node];
}
int mid = (start + end) >> 1;
int q1 = query(2 * node, start, mid, l, r);
int q2 = query(2 * node + 1, mid + 1, end, l, r);
return q1 | q2;
}
// Function to count requisite number of subarrays
int countSubArrays(const int* arr, int n, int K)
{
int count = 0;
for (int i = 0; i < n; i++) {
// Check for subarrays starting with index i
int low = i, high = n - 1, index = INT_MAX;
while (low <= high) {
int mid = (low + high) >> 1;
// If OR of subarray [i..mid] >= K,
// then all subsequent subarrays will have OR >= K
// therefore reduce high to mid - 1
// to find the minimal length subarray
// [i..mid] having OR >= K
if (query(1, 0, n - 1, i, mid) >= K) {
index = min(index, mid);
high = mid - 1;
}
else {
low = mid + 1;
}
}
// Increase count with number of subarrays
// having OR >= K and starting with index i
if (index != INT_MAX) {
count += n - index;
}
}
return count;
}
// Driver code
int main()
{
int arr[] = { 3, 4, 5 };
int n = sizeof(arr) / sizeof(arr[0]);
// Build segment tree.
build(arr, 1, 0, n - 1);
int k = 6;
cout << countSubArrays(arr, n, k);
return 0;
}
Java 语言(一种计算机语言,尤用于创建网站)
// Java implementation of the above approach
class GFG
{
static int N = 100002;
static int tree[] = new int[4 * N];
// Function which builds the segment tree
static void build(int[] arr, int node,
int start, int end)
{
if (start == end)
{
tree[node] = arr[start];
return;
}
int mid = (start + end) >> 1;
build(arr, 2 * node, start, mid);
build(arr, 2 * node + 1, mid + 1, end);
tree[node] = tree[2 * node] | tree[2 * node + 1];
}
// Function that returns bitwise
// OR of segment [L..R]
static int query(int node, int start,
int end, int l, int r)
{
if (start > end || start > r || end < l)
{
return 0;
}
if (start >= l && end <= r)
{
return tree[node];
}
int mid = (start + end) >> 1;
int q1 = query(2 * node, start, mid, l, r);
int q2 = query(2 * node + 1, mid + 1, end, l, r);
return q1 | q2;
}
// Function to count requisite number of subarrays
static int countSubArrays(int[] arr,
int n, int K)
{
int count = 0;
for (int i = 0; i < n; i++)
{
// Check for subarrays starting with index i
int low = i, high = n - 1, index = Integer.MAX_VALUE;
while (low <= high)
{
int mid = (low + high) >> 1;
// If OR of subarray [i..mid] >= K,
// then all subsequent subarrays will
// have OR >= K therefore reduce
// high to mid - 1 to find the
// minimal length subarray
// [i..mid] having OR >= K
if (query(1, 0, n - 1, i, mid) >= K)
{
index = Math.min(index, mid);
high = mid - 1;
}
else
{
low = mid + 1;
}
}
// Increase count with number of subarrays
// having OR >= K and starting with index i
if (index != Integer.MAX_VALUE)
{
count += n - index;
}
}
return count;
}
// Driver code
public static void main(String[] args)
{
int arr[] = {3, 4, 5};
int n = arr.length;
// Build segment tree.
build(arr, 1, 0, n - 1);
int k = 6;
System.out.println(countSubArrays(arr, n, k));
}
}
// This code is contributed by Rajput-Ji
Python 3
# Python3 program to implement the above approach
N = 100002
tree = [0 for i in range(4 * N)];
# Function which builds the segment tree
def build(arr, node, start, end):
if (start == end):
tree[node] = arr[start];
return;
mid = (start + end) >> 1;
build(arr, 2 * node, start, mid);
build(arr, 2 * node + 1, mid + 1, end);
tree[node] = tree[2 * node] | tree[2 * node + 1];
# Function that returns bitwise OR of segment [L..R]
def query(node, start, end, l, r):
if (start > end or start > r or end < l):
return 0;
if (start >= l and end <= r):
return tree[node];
mid = (start + end) >> 1;
q1 = query(2 * node, start, mid, l, r);
q2 = query(2 * node + 1, mid + 1, end, l, r);
return q1 | q2;
# Function to count requisite number of subarrays
def countSubArrays(arr, n, K):
count = 0;
for i in range(n):
# Check for subarrays starting with index i
low = i
high = n - 1
index = 1000000000
while (low <= high):
mid = (low + high) >> 1;
# If OR of subarray [i..mid] >= K,
# then all subsequent subarrays will have OR >= K
# therefore reduce high to mid - 1
# to find the minimal length subarray
# [i..mid] having OR >= K
if (query(1, 0, n - 1, i, mid) >= K):
index = min(index, mid);
high = mid - 1;
else :
low = mid + 1;
# Increase count with number of subarrays
# having OR >= K and starting with index i
if (index != 1000000000):
count += n - index;
return count;
# Driver code
if __name__=='__main__':
arr = [ 3, 4, 5 ]
n = len(arr)
# Build segment tree.
build(arr, 1, 0, n - 1);
k = 6;
print(countSubArrays(arr, n, k))
# This code is contributed by rutvik_56.
C
// C# implementation of the above approach
using System;
class GFG
{
static int N = 100002;
static int []tree = new int[4 * N];
// Function which builds the segment tree
static void build(int[] arr, int node,
int start, int end)
{
if (start == end)
{
tree[node] = arr[start];
return;
}
int mid = (start + end) >> 1;
build(arr, 2 * node, start, mid);
build(arr, 2 * node + 1, mid + 1, end);
tree[node] = tree[2 * node] | tree[2 * node + 1];
}
// Function that returns bitwise
// OR of segment [L..R]
static int query(int node, int start,
int end, int l, int r)
{
if (start > end || start > r || end < l)
{
return 0;
}
if (start >= l && end <= r)
{
return tree[node];
}
int mid = (start + end) >> 1;
int q1 = query(2 * node, start, mid, l, r);
int q2 = query(2 * node + 1, mid + 1, end, l, r);
return q1 | q2;
}
// Function to count requisite number of subarrays
static int countSubArrays(int[] arr,
int n, int K)
{
int count = 0;
for (int i = 0; i < n; i++)
{
// Check for subarrays starting with index i
int low = i, high = n - 1, index = int.MaxValue;
while (low <= high)
{
int mid = (low + high) >> 1;
// If OR of subarray [i..mid] >= K,
// then all subsequent subarrays will
// have OR >= K therefore reduce
// high to mid - 1 to find the
// minimal length subarray
// [i..mid] having OR >= K
if (query(1, 0, n - 1, i, mid) >= K)
{
index = Math.Min(index, mid);
high = mid - 1;
}
else
{
low = mid + 1;
}
}
// Increase count with number of subarrays
// having OR >= K and starting with index i
if (index != int.MaxValue)
{
count += n - index;
}
}
return count;
}
// Driver code
public static void Main(String[] args)
{
int []arr = {3, 4, 5};
int n = arr.Length;
// Build segment tree.
build(arr, 1, 0, n - 1);
int k = 6;
Console.WriteLine(countSubArrays(arr, n, k));
}
}
// This code is contributed by PrinciRaj1992
java 描述语言
<script>
// JavaScript implementation of the above approach
let N = 100002;
let tree=new Array(4*N);
// Function which builds the segment tree
function build(arr,node,start,end)
{
if (start == end)
{
tree[node] = arr[start];
return;
}
let mid = (start + end) >> 1;
build(arr, 2 * node, start, mid);
build(arr, 2 * node + 1, mid + 1, end);
tree[node] = tree[2 * node] | tree[2 * node + 1];
}
// Function that returns bitwise
// OR of segment [L..R]
function query(node,start,end,l,r)
{
if (start > end || start > r || end < l)
{
return 0;
}
if (start >= l && end <= r)
{
return tree[node];
}
let mid = (start + end) >> 1;
let q1 = query(2 * node, start, mid, l, r);
let q2 = query(2 * node + 1, mid + 1, end, l, r);
return q1 | q2;
}
// Function to count requisite number of subarrays
function countSubArrays(arr,n,K)
{
let count = 0;
for (let i = 0; i < n; i++)
{
// Check for subarrays starting with index i
let low = i, high = n - 1, index = Number.MAX_VALUE;
while (low <= high)
{
let mid = (low + high) >> 1;
// If OR of subarray [i..mid] >= K,
// then all subsequent subarrays will
// have OR >= K therefore reduce
// high to mid - 1 to find the
// minimal length subarray
// [i..mid] having OR >= K
if (query(1, 0, n - 1, i, mid) >= K)
{
index = Math.min(index, mid);
high = mid - 1;
}
else
{
low = mid + 1;
}
}
// Increase count with number of subarrays
// having OR >= K and starting with index i
if (index != Number.MAX_VALUE)
{
count += n - index;
}
}
return count;
}
// Driver code
let arr=[3, 4, 5];
let n = arr.length;
// Build segment tree.
build(arr, 1, 0, n - 1);
let k = 6;
document.write(countSubArrays(arr, n, k));
// This code is contributed by patel2127
</script>
Output:
2
上述解的时间复杂度为 O(n log 2 n) 。 辅助空间 : O(n)。
版权属于:月萌API www.moonapi.com,转载请注明出处