具有 K 个逆的置换数
给定一个数组,求逆定义为 a[i],a[j]这样的一对,a[i] > a[j]和 i < j .给我们两个数字 N 和 K,我们需要知道前 N 个数字中有多少排列恰好有 K 个求逆。
示例:
Input : N = 3, K = 1
Output : 2
Explanation :
Total Permutation of first N number,
123, 132, 213, 231, 312, 321
Permutation with 1 inversion : 132 and 213
Input : N = 4, K = 2
Output : 5
解决这个问题的一个简单方法是记下所有的排列,然后检查它们中的逆序计数,但是遍历排列本身将花费 O(N!)时间,太大了。
我们可以用动态规划的方法来解决这个问题。下面是递归公式。
If N is 0, Count(0, K) = 0
If K is 0, Count(N, 0) = 1 (Only sorted array)
In general case,
If we have N number and require K inversion,
Count(N, K) = Count(N - 1, K) +
Count(N – 1, K - 1) +
Count(N – 1, K – 2) +
.... +
Count(N – 1, 0)
以上递归公式是如何工作的? 如果我们有 N 个数,想有 K 个排列,假设(N–1)数的所有排列都写在某个地方,那么新的数(第 N 个数,最大)需要放在(N–1)数的所有排列中,那些加完这个数后逆序数变成 K 的应该加到我们的答案中。现在拿那些已经让(K–3)求逆的(N–1)数的置换集来说,现在我们可以把这个新的最大的数放在从最后开始的位置 3,那么求逆计数将是 K,所以计数(N–1,K–3)应该加到我们的答案中,同样的参数也可以给其他求逆,我们将得到上面的递归作为最终的答案。
下面的代码是按照上面的递归以记忆的方式编写的。
C++
// C++ program to find number of permutation
// with K inversion using Memoization
#include <bits/stdc++.h>
using namespace std;
// Limit on N and K
const int M = 100;
// 2D array memo for stopping
// solving same problem again
int memo[M][M];
// method recursively calculates
// permutation with K inversion
int numberOfPermWithKInversion(int N, int K)
{
// base cases
if (N == 0)
return 0;
if (K == 0)
return 1;
// if already solved then
// return result directly
if (memo[N][K] != 0)
return memo[N][K];
// calling recursively all subproblem
// of permutation size N - 1
int sum = 0;
for (int i = 0; i <= K; i++)
{
// Call recursively only
// if total inversion
// to be made are less
// than size
if (i <= N - 1)
sum += numberOfPermWithKInversion(N - 1,
K - i);
}
// store result into memo
memo[N][K] = sum;
return sum;
}
// Driver code
int main()
{
int N = 4;
int K = 2;
cout << numberOfPermWithKInversion(N, K);
return 0;
}
Java 语言(一种计算机语言,尤用于创建网站)
// Java program to find number of permutation with
// K inversion using Memoization
import java.io.*;
class GFG {
// Limit on N and K
static int M = 100;
// 2D array memo for stopping solving same problem
// again
static int memo[][] = new int[M][M];
// method recursively calculates permutation with
// K inversion
static int numberOfPermWithKInversion(int N, int K)
{
// base cases
if (N == 0)
return 0;
if (K == 0)
return 1;
// if already solved then return result directly
if (memo[N][K] != 0)
return memo[N][K];
// calling recursively all subproblem of
// permutation size N - 1
int sum = 0;
for (int i = 0; i <= K; i++) {
// Call recursively only if total inversion
// to be made are less than size
if (i <= N - 1)
sum += numberOfPermWithKInversion(N - 1,
K - i);
}
// store result into memo
memo[N][K] = sum;
return sum;
}
// Driver code to test above methods
public static void main(String[] args)
{
int N = 4;
int K = 2;
System.out.println(numberOfPermWithKInversion(N, K));
}
}
// This code is contributed by vt_m.
Python 3
# Python3 program to find number of permutation
# with K inversion using Memoization
# Limit on N and K
M = 100
# 2D array memo for stopping
# solving same problem again
memo = [[0 for i in range(M)] for j in range(M)]
# method recursively calculates
# permutation with K inversion
def numberOfPermWithKInversion(N, K):
# Base cases
if (N == 0): return 0
if (K == 0): return 1
# If already solved then
# return result directly
if (memo[N][K] != 0):
return memo[N][K]
# Calling recursively all subproblem
# of permutation size N - 1
sum = 0
for i in range(K + 1):
# Call recursively only if
# total inversion to be made
# are less than size
if (i <= N - 1):
sum += numberOfPermWithKInversion(N - 1, K - i)
# store result into memo
memo[N][K] = sum
return sum
# Driver code
N = 4; K = 2
print(numberOfPermWithKInversion(N, K))
# This code is contributed by Anant Agarwal.
C
// C# program to find number of
// permutation with K inversion
// using Memoization
using System;
class GFG
{
// Limit on N and K
static int M = 100;
// 2D array memo for stopping
// solving same problem again
static int [,]memo = new int[M, M];
// method recursively calculates
// permutation with K inversion
static int numberOfPermWithKInversion(int N,
int K)
{
// base cases
if (N == 0)
return 0;
if (K == 0)
return 1;
// if already solved then
// return result directly
if (memo[N, K] != 0)
return memo[N, K];
// calling recursively all
// subproblem of permutation
// size N - 1
int sum = 0;
for (int i = 0; i <= K; i++)
{
// Call recursively only if
// total inversion to be
// made are less than size
if (i <= N - 1)
sum += numberOfPermWithKInversion(N - 1,
K - i);
}
// store result into memo
memo[N, K] = sum;
return sum;
}
// Driver Code
static public void Main ()
{
int N = 4;
int K = 2;
Console.WriteLine(numberOfPermWithKInversion(N, K));
}
}
// This code is contributed by ajit
服务器端编程语言(Professional Hypertext Preprocessor 的缩写)
<?php
// PHP program to find number of permutation
// with K inversion using Memoization
// method recursively calculates
// permutation with K inversion
function numberOfPermWithKInversion($N, $K)
{
$memo = array();
// base cases
if ($N == 0)
return 0;
if ($K == 0)
return 1;
// if already solved then
// return result directly
if ($memo[$N][$K] != 0)
return $memo[$N][$K];
// calling recursively all subproblem
// of permutation size N - 1
$sum = 0;
for ($i = 0; $i <= $K; $i++)
{
// Call recursively only
// if total inversion
// to be made are less
// than size
if ($i <= $N - 1)
$sum += numberOfPermWithKInversion($N - 1,
$K - $i);
}
// store result into memo
$memo[$N][$K] = $sum;
return $sum;
}
// Driver code
$N = 4;
$K = 2;
echo numberOfPermWithKInversion($N, $K);
// This code is contributed
// by Akanksha Rai(Abby_akku)
?>
java 描述语言
<script>
// Javascript program to find number of
// permutation with K inversion using
// Memoization
// Limit on N and K
let M = 100;
// 2D array memo for stopping solving
// same problem again
let memo = new Array(M);
for(let i = 0; i < M; i++)
{
memo[i] = new Array(M);
for(let j = 0; j < M; j++)
{
memo[i][j] = 0;
}
}
// Method recursively calculates permutation
// with K inversion
function numberOfPermWithKInversion(N, K)
{
// base cases
if (N == 0)
return 0;
if (K == 0)
return 1;
// If already solved then return
// result directly
if (memo[N][K] != 0)
return memo[N][K];
// Calling recursively all subproblem of
// permutation size N - 1
let sum = 0;
for(let i = 0; i <= K; i++)
{
// Call recursively only if total inversion
// to be made are less than size
if (i <= N - 1)
sum += numberOfPermWithKInversion(
N - 1, K - i);
}
// Store result into memo
memo[N][K] = sum;
return sum;
}
// Driver code
let N = 4;
let K = 2;
document.write(numberOfPermWithKInversion(N, K));
// This code is contributed by divyesh072019
</script>
Output
5
时间复杂度: O(NNK)
优化方法:使用列表和累积和
C++
// C++ program to find number of permutation
// with K inversions
#include <bits/stdc++.h>
using namespace std;
int numberOfPermWithKInversions(int N, int K) {
vector<vector<int>> dp(N+1,vector<int>(K+1));
// As for k=0, number of permutations is 1 for every N
for(int i = 1; i <= N; i++)
dp[i][0] = 1;
// Using Dynamic Programming with cumulative sum
for(int i = 1; i <= N; i++)
{
for(int j = 1; j <= K; j++)
{
// This is same as val = dp[i-1][j] - dp[i-1][j-i]
// i.e. dp[i-1][j........j-i], just taking care of
// boundaries
int val = dp[i-1][j];
if(j >= i)
val -= dp[i-1][j-i];
dp[i][j] = dp[i][j-1] + val;
}
}
// And, in the end calculate the dp[n][k]
// which is dp[n][k]-dp[n][k-1]
int ans = dp[N][K];
if(K >= 1)
ans -= dp[N][K-1];
return ans;
}
int main() {
int N = 4;
int K = 2;
cout << numberOfPermWithKInversions(N,K) << "\n";
return 0;
}
Output
5
时间复杂度: O(N*K)
本文由 【乌卡什·特里维迪】安基特·库马尔·夏尔马 供稿。如果你喜欢 GeeksforGeeks 并想投稿,你也可以用write.geeksforgeeks.org写一篇文章或者把你的文章邮寄到 review-team@geeksforgeeks.org。看到你的文章出现在极客博客主页上,帮助其他极客。 如果发现有不正确的地方,或者想分享更多关于上述话题的信息,请写评论。
版权属于:月萌API www.moonapi.com,转载请注明出处