给定天数的最佳阅读列表
一个人决心在“k”天内完成这本书,但他从来不想在中间停下一章。找到章节的最佳分配,这样这个人总体上不会读太多额外/较少的页面。
示例:
Input: Number of Days to Finish book = 2
Number of pages in chapters = {10, 5, 5}
Output: Day 1: Chapter 1
Day 2: Chapters 2 and 3
Input: Number of Days to Finish book = 3
Number of pages in chapters = {8, 5, 6, 12}
Output: Day 1: Chapter 1
Day 2: Chapters 2 and 3
Day 2: Chapter 4
目标是最小化每天读取的页数和平均页数之间的差异总和。如果平均页数是非整数,则应该四舍五入到最接近的整数。
在上面的例子 2 中,平均页数是(8 + 5 + 6 + 12)/3 = 31/3,四舍五入到 10。因此,对于上面显示的输出,每天的平均页数和页数之差是“ABS(8-10)+ABS(5+6-10)+ABS(12-10)”,即 5。值 5 是差值总和的最佳值。
考虑上面的例子 2,其中一本书有 4 章,第 8、5、6 和 12 页。用户希望在 3 天内完成。上述场景的图形表示是,
在上图中,顶点代表章节,边 e(u,v)代表要从“u”读到“v”的页数。增加了下沉节点来象征书的结尾。
首先,计算一天的平均阅读页数(这里 31/3 大致是 10)。新的边权重 e '(u,v)将是平均差值| avg–e(u,v)|。上述问题的修正图是,
感谢犰狳在评论中提出这个想法。
这个想法是从第 1 章开始,做一个 DFS 来寻找边数为“k”的 sink。继续将访问过的顶点存储在一个数组中,比如“路径[]”。如果我们到达目的顶点,并且路径和小于最优路径,则更新最优分配 optimal_path[]。注意,该图是 DAG,因此在 DFS 期间不需要考虑周期。 下面,是 C++实现的同款,邻接矩阵用来表示图。以下程序主要有 4 个阶段。 1)构造一个有向无环图。 2)利用 DFS 寻找最优路径。 3)打印找到的最优路径。
C++
// C++ DFS solution to schedule chapters for reading in
// given days
# include <iostream>
# include <cstdlib>
# include <climits>
# include <cmath>
using namespace std;
// Define total chapters in the book
// Number of days user can spend on reading
# define CHAPTERS 4
# define DAYS 3
# define NOLINK -1
// Array to store the final balanced schedule
int optimal_path[DAYS+1];
// Graph - Node chapter+1 is the sink described in the
// above graph
int DAG[CHAPTERS+1][CHAPTERS+1];
// Updates the optimal assignment with current assignment
void updateAssignment(int* path, int path_len);
// A DFS based recursive function to store the optimal path
// in path[] of size path_len. The variable sum stores sum of
// of all edges on current path. k is number of days spent so
// far.
void assignChapters(int u, int* path, int path_len, int sum, int k)
{
static int min = INT_MAX;
// Ignore the assignment which requires more than required days
if (k < 0)
return;
// Current assignment of chapters to days
path[path_len] = u;
path_len++;
// Update the optimal assignment if necessary
if (k == 0 && u == CHAPTERS)
{
if (sum < min)
{
updateAssignment(path, path_len);
min = sum;
}
}
// DFS - Depth First Search for sink
for (int v = u+1; v <= CHAPTERS; v++)
{
sum += DAG[u][v];
assignChapters(v, path, path_len, sum, k-1);
sum -= DAG[u][v];
}
}
// This function finds and prints optimal read list. It first creates a
// graph, then calls assignChapters().
void minAssignment(int pages[])
{
// 1) ............CONSTRUCT GRAPH.................
// Partial sum array construction S[i] = total pages
// till ith chapter
int avg_pages = 0, sum = 0, S[CHAPTERS+1], path[DAYS+1];
S[0] = 0;
for (int i = 0; i < CHAPTERS; i++)
{
sum += pages[i];
S[i+1] = sum;
}
// Average pages to be read in a day
avg_pages = round(sum/DAYS);
/* DAG construction vertices being chapter name &
* Edge weight being |avg_pages - pages in a chapter|
* Adjacency matrix representation */
for (int i = 0; i <= CHAPTERS; i++)
{
for (int j = 0; j <= CHAPTERS; j++)
{
if (j <= i)
DAG[i][j] = NOLINK;
else
{
sum = abs(avg_pages - (S[j] - S[i]));
DAG[i][j] = sum;
}
}
}
// 2) ............FIND OPTIMAL PATH................
assignChapters(0, path, 0, 0, DAYS);
// 3) ..PRINT OPTIMAL READ LIST USING OPTIMAL PATH....
cout << "Optimal Chapter Assignment :" << endl;
int ch;
for (int i = 0; i < DAYS; i++)
{
ch = optimal_path[i];
cout << "Day" << i+1 << ": " << ch << " ";
ch++;
while ( (i < DAYS-1 && ch < optimal_path[i+1]) ||
(i == DAYS-1 && ch <= CHAPTERS))
{
cout << ch << " ";
ch++;
}
cout << endl;
}
}
// This function updates optimal_path[]
void updateAssignment(int* path, int path_len)
{
for (int i = 0; i < path_len; i++)
optimal_path[i] = path[i] + 1;
}
// Driver program to test the schedule
int main(void)
{
int pages[CHAPTERS] = {7, 5, 6, 12};
// Get read list for given days
minAssignment(pages);
return 0;
}
Python 3
# Python3 DFS solution to schedule chapters
# for reading in given days
# A DFS based recursive function to store
# the optimal path in path[] of size path_len.
# The variable Sum stores Sum of all edges on
# current path. k is number of days spent so far.
def assignChapters(u, path, path_len, Sum, k):
global CHAPTERS, DAYS, NOLINK, optical_path, DAG, Min
# Ignore the assignment which requires
# more than required days
if (k < 0):
return
# Current assignment of chapters to days
path[path_len] = u
path_len += 1
# Update the optimal assignment if necessary
if (k == 0 and u == CHAPTERS):
if (Sum < Min):
updateAssignment(path, path_len)
Min = Sum
# DFS - Depth First Search for sink
for v in range(u + 1, CHAPTERS + 1):
Sum += DAG[u][v]
assignChapters(v, path, path_len, Sum, k - 1)
Sum -= DAG[u][v]
# This function finds and prints
# optimal read list. It first creates a
# graph, then calls assignChapters().
def MinAssignment(pages):
global CHAPTERS, DAYS, NOLINK, optical_path, DAG, MIN
# 1) ............CONSTRUCT GRAPH.................
# Partial Sum array construction S[i] = total pages
# till ith chapter
avg_pages = 0
Sum = 0
S = [None] * (CHAPTERS + 1)
path = [None] * (DAYS + 1)
S[0] = 0
for i in range(CHAPTERS):
Sum += pages[i]
S[i + 1] = Sum
# Average pages to be read in a day
avg_pages = round(Sum/DAYS)
# DAG construction vertices being chapter name &
# Edge weight being |avg_pages - pages in a chapter|
# Adjacency matrix representation
for i in range(CHAPTERS + 1):
for j in range(CHAPTERS + 1):
if (j <= i):
DAG[i][j] = NOLINK
else:
Sum = abs(avg_pages - (S[j] - S[i]))
DAG[i][j] = Sum
# 2) ............FIND OPTIMAL PATH................
assignChapters(0, path, 0, 0, DAYS)
# 3) ..PROPTIMAL READ LIST USING OPTIMAL PATH....
print("Optimal Chapter Assignment :")
ch = None
for i in range(DAYS):
ch = optimal_path[i]
print("Day", i + 1, ": ", ch, end = " ")
ch += 1
while ((i < DAYS - 1 and ch < optimal_path[i + 1]) or
(i == DAYS - 1 and ch <= CHAPTERS)):
print(ch, end = " ")
ch += 1
print()
# This function updates optimal_path[]
def updateAssignment(path, path_len):
for i in range(path_len):
optimal_path[i] = path[i] + 1
# Driver Code
# Define total chapters in the book
# Number of days user can spend on reading
CHAPTERS = 4
DAYS = 3
NOLINK = -1
# Array to store the final balanced schedule
optimal_path = [None] * (DAYS + 1)
# Graph - Node chapter+1 is the sink
# described in the above graph
DAG = [[None] * (CHAPTERS + 1)
for i in range(CHAPTERS + 1)]
Min = 999999999999
pages = [7, 5, 6, 12]
# Get read list for given days
MinAssignment(pages)
# This code is contributed by PranchalK
输出:
Optimal Chapter Assignment :
Day1: 1
Day2: 2 3
Day3: 4
本文由巴拉吉 S 供稿。如果你发现任何不正确的地方,或者你想分享更多关于上面讨论的话题的信息,请写评论。
版权属于:月萌API www.moonapi.com,转载请注明出处