Python–统计中的离散超几何分布

原文:https://www . geesforgeks . org/python-离散-超几何-统计中的分布/

scipy.stats.hypergeom() 是一个超几何离散随机变量。它继承自泛型方法的,作为 rv_discrete 类的实例。它用特定于这个特定分布的细节来完成这些方法。

参数:

x : 分位数 loc : 【可选】位置参数。默认= 0 刻度:【可选】刻度参数。默认= 1 时刻:【可选】由字母['mvsk']组成;m’=均值,‘v’=方差,‘s’= Fisher 偏斜度,‘k’= Fisher 峰度。(默认值= 'mv ')。

结果:超几何离散随机变量

代码#1:创建超几何离散随机变量

# importing library

from scipy.stats import hypergeom 

numargs = hypergeom .numargs 
a, b = 0.2, 0.8
rv = hypergeom (a, b) 

print ("RV : \n", rv)  

输出:

RV : 
 scipy.stats._distn_infrastructure.rv_frozen object at 0x0000016A4C0DF048

代码#2:超几何离散变量和概率分布

import numpy as np 
quantile = np.arange (0.01, 1, 0.1) 

# Random Variates 
R = hypergeom .pmf(a, b, c, 10) 
print ("Random Variates : \n", R) 

# PDF 
x = np.linspace(hypergeom.ppf(0.01, a, b, c),
                hypergeom.ppf(0.99, a, b, c), 10)
R = hypergeom.ppf(x, 1, 3, 3)
print ("\nProbability Distribution : \n", R) 

输出:

Random Variates : 
 nan

Probability Distribution : 
 [nan nan nan nan nan nan nan nan nan nan]

代码#3:图形表示。

import numpy as np 
import matplotlib.pyplot as plt 

distribution = np.linspace(0, np.minimum(rv.dist.b, 2)) 
print("Distribution : \n", distribution) 

输出:

Distribution : 
 [0\.         0.04081633 0.08163265 0.12244898 0.16326531 0.20408163
 0.24489796 0.28571429 0.32653061 0.36734694 0.40816327 0.44897959
 0.48979592 0.53061224 0.57142857 0.6122449  0.65306122 0.69387755
 0.73469388 0.7755102  0.81632653 0.85714286 0.89795918 0.93877551
 0.97959184 1.02040816 1.06122449 1.10204082 1.14285714 1.18367347
 1.2244898  1.26530612 1.30612245 1.34693878 1.3877551  1.42857143
 1.46938776 1.51020408 1.55102041 1.59183673 1.63265306 1.67346939
 1.71428571 1.75510204 1.79591837 1.83673469 1.87755102 1.91836735
 1.95918367 2\.