Matplotlib.pyplot.semilogx()用 Python
表示
哎哎哎:# t0]https://www . geeksforgeeks . org/matplot lib-pyplot-semilogx-in-python/
数据可视化 是分析数据的重要部分,因为绘制图表有助于更好地洞察和理解问题。matplotlib . pyplot是做同样事情最常用的库之一。它有助于创建有吸引力的数据,并且非常易于使用。
matplotlib . pyplot . semi ogx()函数
此功能用于以 x 轴转换为日志格式的方式可视化数据。当其中一个参数非常大,因此最初以紧凑的方式存储时,此功能特别有用。它支持和matplotlib . axes . axes . set _ xscale()的所有关键字参数。附加参数为 basex 、subxx和nonpsx。****
*语法:*matplotlib . pyplot . semilogx(x,y,)
**参数:一些重要的参数有:
- X:X 轴上的值。
- Y:Y 轴上的值。
- 颜色:(可选)线条或符号的颜色。
- 线宽:(可选)线宽。
- 标签:(可选)指定图形的标签
- basex: (可选)x 对数的底数。标量应该大于 1。
- 子轴:(可选)次轴的位置;无默认为自动瑞银,这取决于图中的十年数。
- nonpsx:(可选)x 中的非正值可以被屏蔽为无效,或者被裁剪为非常小的正数。
- 标记:(可选)将点显示为上述符号。
- 标记化:(可选)更改所有标记的大小。
返回:x 轴上的对数比例图。**
*例 1:* 简单图。
Python 3
#import required library
import matplotlib.pyplot as plt
# defining the values
# at X and Y axis
x = [1, 2, 3,
4, 5, 6]
y = [100, 200, 300,
400, 500, 600]
# plotting the given graph
plt.semilogx(x, y, marker = ".",
markersize = 15,
color = "green")
# plot with grid
plt.grid(True)
# show the plot
plt.show()
*输出:*
**
简单的情节**
*例 2:在 X 轴和 Y 轴使用负值和零值。*
由于 X 轴包含在对数函数中,因此很明显,负值或正值将被截断或屏蔽,如 nonposx 参数所指定的。默认情况下,负值或零值会被截断。
Python 3
# importing required libraries
import matplotlib.pyplot as plt
# defining the values
# at X and Y axis
x = [-1, -2, 0]
y = [5, -2, 0]
# plotting the given graph
plt.semilogx(x,y)
# show the plot
plt.show()
*输出:*
**
没有绘制任何值,因为所有值都是负 x 值**
*示例 3:* 如果使用符号,则简单地移除负值或零值,仅绘制正值。
Python 3
#import required library
import matplotlib.pyplot as plt
# defining the values at X and Y axis
x = [-10, 30, 0, 20,
-50, 25, 29, -3
, 23, 25, 29, 31]
y = [-3, 30, -10, 0,
-40, 3, 8, 0,
-24, 40, 43, 25]
# plotting the graph
plt.semilogx(x,y,'g^', color = "red")
# plot with grid
plt.grid(True)
# set y axis label
plt.ylabel('---y---')
# set x axis label
plt.xlabel('---x---')
# show the plot
plt.show()
*输出:*
**
仅绘制正值**
*示例 4:* 如果使用了线,则值会被截断。
Python 3
#import required library
import matplotlib.pyplot as plt
# defining the values
# at X and Y axis
x = [1, 2, -3,
-4, 5, 6]
y = [100, 200, 300,
400, 500, 600]
# plotting the graph
plt.semilogx(x, y, marker = ".",
markersize = 15)
# plot with grid
plt.grid(True)
# show the plot
plt.show()
*输出:*
**
对应于-3 和-4 的值被剪裁**
*例 5:* 下面的支线剧情会让区别更加明显。
Python 3
#import required library
import matplotlib.pyplot as plt
# specifying the subplot
fig, axes = plt.subplots(nrows = 4,
ncols = 4,
figsize = (10,10))
# Or equivalently,
# "plt.tight_layout()"
fig.tight_layout()
# subplot 1
plt.subplot(2, 2, 1)
x2 = [0.1, 10, -30]
y2 = [40, -10, 45]
# plotting the given graph
plt.semilogx(x2, y2,
color = "blue",
linewidth = 4)
# set the title
plt.title("USING LINE")
# set y axis label
plt.ylabel('-----------y-----------')
# set x axis label
plt.xlabel('-----------x-----------')
# plot with grid
plt.grid(True)
# subplot 2
plt.subplot(2, 2, 2)
x2 = [0.1, 10, -30]
y2 = [40, -10, 45]
# plotting the given graph
plt.semilogx(x2, y2,
'g^',
markersize = 20,
color = "black")
# set the title
plt.title("USING SYMBOL")
# set y axis label
plt.ylabel('-----------y-----------')
# set x axis label
plt.xlabel('-----------x-----------')
# plot with grid
plt.grid(True)
# subplot 3
plt.subplot(2, 2, 3)
x2 = [0.1, 10, -30]
y2 = [40, -10 ,45]
# plotting the given graph
plt.semilogx(x2, y2,
nonposx = "clip",
color = "red",
linewidth = 4)
# set the title
plt.title("CLIPPED")
# set y axis label
plt.ylabel('-----------y-----------')
# set x axis label
plt.xlabel('-----------x-----------')
# plot with grid
plt.grid(True)
# subplot 4
plt.subplot(2, 2, 4)
x2 = [0.1, 10, -30]
y2 = [40, -10, 45]
# plotting the given graph
plt.semilogx(x2, y2,
nonposx = "mask",
color = "green",
linewidth = 4)
# set the title
plt.title("MASKED")
# set y axis label
plt.ylabel('-----------y-----------')
# set x axis label
plt.xlabel('-----------x-----------')
# plot with grid
plt.grid(True)
# show the plot
plt.show()
*输出:*
**
所有情节之间的差异。**
*示例 6:使用 nonposx 参数。*
屏蔽会删除无效值,而剪裁会将它们设置为一个非常低的可能值。
*削波*和遮蔽的区别在下面的剧情中会更加清晰。
Python 3
# import required library
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows = 1,
ncols = 2,
figsize = (15,9))
# Or equivalently, "plt.tight_layout()"
fig.tight_layout()
# subplot 1
x1 = [-1, 2, 0,
-3, 5, 9,
10, -3, -8,
15, 12, 0.1,0.9]
y1 = [5, -2, 0,
10, 20, 30,
25, 28, 16,
25, 28, 3, 5]
plt.subplot(1,2,1)
# plotting the graph
plt.semilogx(x1, y1,
marker = ".",
markersize = 20,
nonposx = "clip",
color = "green" )
# set the y-axis label
plt.ylabel('---y---')
# set the x-axis label
plt.xlabel('---x---')
# set the title
plt.title('CLIP')
# plot with grid
plt.grid(True)
# subplot 2
x2 = [-1, 2, 0,
-3, 5, 9,
10, -3, -8,
15, 12, 0.1, 0.9]
y2 = [5, -2, 0,
10, 20, 30,
25, 28, 16,
25, 28, 3, 5]
plt.subplot(1,2,2)
plt.semilogx(x2, y2,
nonposx = "mask",
color ="green",
linewidth = 4,
marker = ".",
markersize = 20)
# set the title
plt.title('MASK')
# set the y-axis label
plt.ylabel('---y---')
# set the x-axis label
plt.xlabel('---x---')
# plot with grid
plt.grid(True)
# show the plot
plt.show()
*输出:*
**
遮罩和剪辑之间的区别**
*例 7:改变基数。*
基数可根据方便设置,应大于 1 以满足对数性质。
Python 3
# importing the required libraries
import numpy as np
import matplotlib.pyplot as plt
# function that will
# output the values
def function(t):
return np.exp(-t)*np.sin(2*np.pi.t)/2 + np.tan(t)
# define the x-axis values
t1 = np.arange(-0.01, 1.0, 0.08)
t2 = np.arange(0.0, 5.0, 0.02)
# subplot 1
plt.figure(figsize = (10,10))
plt.subplot(211)
# plot the graph
plt.semilogx(t1, f(t1),
'bo', t2, f(t2),
'k', color = "blue",
basex = 3)
# set the title
plt.title("BASE: 3")
# subplot 2
plt.subplot(212)
# plot the graph
plt.semilogx(t2, np.cos(2*np.pi*t2),
'r--', color = "brown",
linewidth = 2, basex = 4)
# set the title
plt.title("BASE: 4")
# show the plot
plt.show()
*输出:*
**
改变基数**
*例 8:使用 subsx 参数。*
指定 X 轴上的次要 X 轴。默认情况下,这取决于情节中的十年数。
Python 3
# import required library
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows = 2,
ncols = 2,
figsize = (10,7))
# Or equivalently, "plt.tight_layout()"
fig.tight_layout()
# subplot 1
plt.subplot(2, 2, 1)
x = [1, 11]
y = [4, 6]
# plot the graph
plt.semilogx(x, y, marker = ".",
markersize = 20,
color = "green")
# set the title
plt.title("Without subsx - line ")
# plot with grid
plt.grid(True)
# subplot 2
plt.subplot(2, 2, 2)
x = [1, 11]
y = [4, 6]
# plot the graph
plt.semilogx(x, y, subsx = [2, 3, 9, 10],
marker = ".", markersize = 20,
color = "green")
# set the title
plt.title("With subsx - line ")
plt.grid(True)
# subplot 3
plt.subplot(2, 2, 3)
x = [1, 11]
y = [4, 6]
plt.semilogx(x, y, 'g^', marker = ".",
markersize = 20,
color = "blue")
plt.title("Without subsx - symbol ")
plt.grid(True)
# subplot 4
plt.subplot(2, 2, 4)
x = [1, 11]
y = [4, 6]
plt.semilogx(x, y, 'g^', subsx=[2, 3, 9, 10],
marker = ".", markersize = 20,
color = "blue")
plt.title("With subsx - symbol ")
plt.grid(True)
plt.show()
*输出*:
**
SUBSX 参数**
*总结:*
- X 轴以对数方式绘制,可以通过定义 basex 属性来指定基数。基数应该大于 1
- 如果绘制了直线,则缺省情况下会裁剪负值或零值。
- *蒙版*属性删除负值/零值,而剪辑属性将其设置为非常低的正值。
- 如果使用符号,则默认情况下会屏蔽负/零。
- *semi ogx*遵循 plot() 和matplotlib . axes . axes . set _ xscale()的所有参数。****
- *子 x* 参数定义次要 XT 信号。
版权属于:月萌API www.moonapi.com,转载请注明出处